
CHARON: Polyglot Code Analysis for Detecting Vulnerabilities in Scripting
Languages Native Extensions

Raoul Scholtes∗, Soheil Khodayari∗, Cristian-Alexandru Staicu∗, and Giancarlo Pellegrino∗
∗CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
Email: {raoul.scholtes, soheil.khodayari, staicu, pellegrino}@cispa.de

Abstract—Scripting languages like Python or JavaScript are
extremely popular among developers, in part due to their
massive open-source ecosystems that enable smooth code
reuse. However, recent work shows that a lot of scripting
code runs C/C++ code under the hood, via native extensions.
This might introduce subtle security issues that can surprise
the users. Prior work in this domain relies on simple, intra-
procedural, flow-insensitive data flow analysis to detect such
problems, but it is unclear if a more holistic polyglot static
analysis could be feasible, and if so, what are its costs and
benefits.

In this work, we propose CHARON, the first inter-
procedural, polyglot static analysis for detecting vulnerabili-
ties in scripting languages. Our approach advocates for link-
ing together the code property graphs of the different lan-
guages and performing cross-language data flow analysis by
switching between code representations, when cross-language
function calls are encountered. In this way, CHARON sup-
ports data flows that cross several times the language bound-
ary, spanning multiple functions on either side. We evaluated
CHARON on 11.8K polyglot packages from npm and PyPI,
containing 896M lines of code. CHARON identified 5,813
manually-confirmed, vulnerable data flows in 116 packages.
We performed a baseline comparison of CHARON with
single-language analysis on native code, showing a ∼6x in-
crease in true positives and ∼4% less false positive alerts. We
demonstrated exploitability of the discovered vulnerabilities
by creating 63 PoCs across 34 packages, showing, among
others, how we can escalate a buffer overflow vulnerability
in native extensions to arbitrary code execution, which we
believe to be the first of its kind. Overall, our results show
that inter-procedural, polyglot analysis is both feasible and
effective for detection of native extension vulnerabilities.

1. Introduction

Over the past decades, scripting languages such as
Python and JavaScript have become tremendously pop-
ular, fostered by extensive repositories of third-party code
available via package managers like pip and npm. While
most packages are libraries and frameworks written in
the same scripting language, e.g., Django for Python or
Express.js for JavaScript, more and more packages rely
on functionality offered by native C/C++ extensions for
performance reasons, e.g., NumPy, to access hardware
devices, e.g., Cylon.js, or to reuse system libraries,
e.g., OpenSSL. Vulnerabilities in native extensions can
have devastating effects on the security of scripting pro-

grams and on the entire runtime, introducing security
risks in the memory management such as buffer overflow
vulnerabilities, which might allow attackers to achieve
remote code execution.

Detecting vulnerabilities in scripting language packages
is a challenging task. The vast majority of code analy-
sis techniques work with one language only, either the
scripting language, e.g., JavaScript [1–4] and PHP [5, 6],
or the native C/C++ code [7–9]. While these techniques
can effectively find vulnerabilities in the targeted lan-
guage, they operate in isolation and cannot reason on
two languages simultaneously, e.g., incorrectly flagging
unreachable code. Recently, Staicu et al. [10] survey the
security problems caused by native extensions in script-
ing languages and present a cross-language, static data
flow analysis technique. However, their prototype is flow-
insensitive, mostly intra-procedural, limited to data-flow
analysis, and it only supports the JavaScript language.
Moreover, their implementation is also limited to iden-
tifying misuses of the API that allow attackers to pass
arguments of the wrong type to polyglot packages. Thus,
the state of the art in this domain cannot handle flows
that span multiple functions in one of the languages or
that cross the language boundary multiple times. It is
also unclear if bugs in native extensions can be leveraged
for serious security attacks like arbitrary code injection.
Beyond the security domain, Monat et al. [11] present a
more sophisticate multilingual static analysis for Python
to find runtime errors in native extensions. However, this
approach is relatively slow due to reliance on abstract
interpretation, it is Python-specific, and it is unclear how it
can be adapted to the security domain to implement flow-
based analyses, e.g., taint analysis. As a result, we still
lack a technique that can systematically support reusable
code analysis across languages.

In this paper, we present CHARON, a holistic static
analysis based on fused code property graphs representing
both the scripting code and the native extension, which
we term polyglot property graph (PPG). To construct
this graph, CHARON detects and interprets calls to spe-
cific APIs that allow cross-language function invocations.
Using PPGs, CHARON performs a backward data flow
analysis starting from sinks and traversing cross-language
calls as they would be single-language calls. Our prototype
includes queries for nine C/C++ security problems, mod-
eled using 16 sinks and 31 mitigation types and marks
all the inputs to a given polyglot package as sources.
We extensively evaluate CHARON against real-world npm
and PyPI polyglot packages, analyzing 11.8K packages

using native extensions, covering three languages, i.e.,
Python, JavaScript, and C/C++. Our evaluation shows that
CHARON can identify 5,813 vulnerable data flows in 116
packages, showing that problematic native extensions are
prevalent. For 34 packages, we create proof-of-concept
exploits that show the presence of the security problem
and we report them to maintainers. For the most serious
ones, the community issued security advisories to warn
about the high severity of the issues. For one buffer
overflow vulnerability we discovered, we performed the
difficult task of attempting an arbitrary code injection via
overwriting the return address on the stack. We discuss the
structure of the payload and the difficulties of deploying
it in practice.

At a high level, our results show that a holistic, inter-
procedural static analysis is effective at finding vulnerabil-
ities in real polyglot packages. Our baseline comparison
of CHARON with single-language analysis of native code
suggests that CHARON results in a ∼6x increase in true
positives and ∼4% less false positives. For example, we
show that CHARON identifies 2,606 flows in which the
sink is in the native code, but the vulnerability is unreach-
able from or mitigated in the scripting language. Such
cases would result in false positives in a single-language
analysis setup. We also show that the percentage of false
positives produced by CHARON are comparable to that of
a single-language approach. This may appear surprising,
since the tool might flag multiple paths reaching a given
flagged code location, thus, amplifying the number of
false positives. However, we observed that this potential
amplification effect is kept low by the other benefits of
a polyglot analysis, such as ignoring unreachable code or
detecting cross-language mitigation.

Finally, we believe to be the first to present a code
injection payload that exploits a low-level, memory-
management vulnerability in native extensions. While this
shows the feasibility of such attacks, we also discuss the
many hurdles attackers need to tackle when attempting
to deliver such payloads at scale, under real-world con-
ditions. In particular, it is extremely difficult to encode
the correct jump address into UTF-8 string values that
attackers can pass to the scripting code and further to the
native code.

To summarize, this paper makes the following contri-
bution:

• We present CHARON, the first polyglot, inter-
procedural static analysis powered by code prop-
erty graphs. At the core of our approach, there are
nine novel cross-language taint-style graph queries
to identify threats to memory integrity in polyglot
packages.

• We evaluate CHARON on 11.8K packages using
native extensions, of which 8.2K npm packages and
3.6K PyPI packages. The evaluation uncovers 17,268
potentially vulnerable data flows in 269 packages, of
which we manually confirmed 5,813 cases across 116
packages.

• We perform a baseline comparison of CHARON with
single-language analysis on the native code, showing
∼6x increase in true positives and ∼4% less false
positives.

• We conduct a thorough analysis of the discov-

ered vulnerabilities, showing the impact of language
boundary on exploitability and creating 63 PoC ex-
ploits in 34 polyglot packages.

2. Background and Motivation

Before presenting our approach, we briefly introduce
the APIs of common native extensions (§2.1) and the
security threats posed by vulnerabilities in their code
(§2.2).

2.1. Native Extensions

Scripting languages offer access to low-level OS prim-
itives via built-in functions and modules, e.g., file or
network I/O, that developers can extend via native exten-
sions. A typical native extension has two parts: a wrapper
module written in the scripting language and a native
module, often in C/C++. Both parts can communicate via
the native extension API, which the language interpreter
implements, providing, for example, a C/C++ mapping
of the scripting language data types, C/C++ primitives
to operate with data types, and the mechanism to call
functions in the native or scripting side.
2.1.1 Python Extension API The Python extension
API [12] requires that C/C++ modules define all exposed
functions to the Python interpreter in a specific format.
For example, C/C++ functions callable from Python must
have the same signature, e.g., static PyObject*
<name>(PyObject* self, PyObject* args)
is a C/C++ function implementing the class method name
of the object self. The Python script can then import
the native code as a library, e.g., via the PyMethodDef
API [13], and then call the method via a library property.
Figure 1 shows a Python module main.py calling the
function init of the Python module _main (import of
this module not shown) which is implemented in C/C++
in the _main.c module. Here, we replace the C/C++
signatures with a keyword PY_METHOD.

The inverse scenario is also feasible, where develop-
ers can call Python functions from the C/C++ module
via the PyObject_CallFunction or PyObject_-
CallMethod APIs [14]. In this paper, we use the term
PY_CALLMETHOD to refer to any of these functions for
brevity. Figure 1 shows such an example where the C/C++
module _main.c calls the function pack (implemented
in the Python module _internal.py) using the PY_-
CALLMETHOD function of the Python extension API.
2.1.2 JavaScript Extension API Similarly to Python,
Node.js provides several alternatives for bridging be-
tween low-level code and JavaScript. First, the ex-
tension API [15] requires that C/C++ programs ex-
plicitly mark exposed functions to the JavaScript
interpreter. This can be done, via the NODE_-
SET_METHOD(exports, "g", f) API that ex-
poses a C function f as g to JavaScript [15],
or via other APIs like Nan::SetMethod() and
Nan::SetPrototypeMethod(), which are part of
the so-called NAN API [16]. Another alternative is
that C/C++ programs leverage the N-API library [17],

1. https://pypi.org/project/dulwich

2

main.py _main.c _pack.c_internal.py
def process_file(name):
 content = input(name)

 if sanitize(content):
 _main.init(content)

PY_METHOD init(tmp) {
 if (sanitize(tmp))

 PY_CALLMETHOD(“pack”, tmp);
}

def pack(tmp):
 sts = 0
 if sanitize(tmp):
 sts = _pack.prep(tmp)
 return sts

PY_METHOD prep(val) {
 [...]
 if (sanitize(val))
 strcpy(core->data, val);
 [...]
}

⚠ ++

++
++ ++

A

B
C D

Figure 1: A buffer overflow vulnerability that cannot be discovered using single-language analysis, inspired by complex cross-language interactions
that CHARON discovered in the Python package dulwich1. Legend: The lines marked with ++ show where potential mitigations could reside
after patching, indicated by the sanitize() function. We use PY_METHOD <name> to replace the function signature static PyObject*
<name>(PyObject* self, PyObject* args); we also use PY_CALLMETHOD for PyObject_CallMethod.

e.g., using the napi_call_function method to call
JavaScript functions.

2.2. Threats to Native Extensions

In this section, we illustrate a concrete risk introduced
by native extensions, using a simplified, real-world poly-
glot package. We then discuss how other classes of vul-
nerabilities might be exposed via native extensions.
2.2.1 Motivating Example. Figure 1 shows a stack-
based buffer overflow vulnerability due to complex cross-
language interactions, inspired by a real flow in the Python
package dulwich, which we discovered in our experi-
ments. In this example, the vulnerability is the presence
of an unvalidated data flow across language boundaries,
where an attacker-controlled input in the Python space
ultimately reaches a string copy operation in the C/C++
space. The attacker-controlled value is first copied in the
C/C++ native library (pointed by the local variable tmp),
then sent back to the Python space to the Python function
pack, implemented in the Python module _internal,
and, finally, sent to the C/C++ module once more via
the prep function, which implements in the native space
the copy operation. When looking at the four modules in
Figure 1, none of them performs input validation, specif-
ically length checking to prevent unbounded copying,
leading to a vulnerable data flow pattern. The mitigation
for this vulnerability, specifically input validation, can be
implemented in any of the four modules, as indicated by
the sanitize() function in Figure 1.

Accurate detection of the vulnerability in Figure 1
requires: (i) recognizing that the value in the sink is
attacker-controlled, and (ii) determining the presence or
absence of mitigation checks in the data flow. A single-
language analysis in C/C++ space is not sufficient to
capture these requirements due to its restricted view of
the source code and may lead to both false positives and
negatives. In fact, native-only analysis lacks visibility into
the JS/Python layer, which may connect multiple C++
functions. Consequently, it cannot infer whether values
reaching the sink from the language boundary are attacker-
controlled (introducing false negatives), unless it considers
all function parameters as such, causing false positives for
validated inputs.

Illustrating the problem using Figure 1, a single-
language approach can only backtrace incoming flows
leading to the dangerous sink up to the method parameter
val in _pack.c forming the language boundary, thus
failing to identify that the value val originates from
attacker-controlled input in main.py. Moreover, it only
sees the presence or absence of mitigations in the two

C/C++ modules of Figure 1, but not in the Python space.
Therefore, if a value is properly sanitized before being
passed from the scripting language to native code, a
native-only analysis may introduce false positives.

As we will show in §4.2.6, cross-language code analysis
is critical to accurately detect a significant number of
vulnerabilities in polyglot packages.

Vulnerability Reference
Buffer Overflow [9, 10, 18–21]
Division by Zero [9, 22, 23]
Format String [24–26]
Integer Overflow [9, 19, 27]
Memory Leak [9, 28]
Null Pointer Dereference [9, 28, 29]
Use-After-Free [9, 10, 30, 31]

TABLE 1: Vulnerabilities affecting native code.

2.2.2 Native Code Vulnerabilities. We conducted a
systematic search of the existing literature and MITRE
CWE database [32], and compiled a comprehensive list
of threats to native extensions, with consequences ranging
from arbitrary code execution to violations of memory
integrity, memory confidentiality, and program availabil-
ity [9, 10, 18, 19, 28]. Table 1 summarizes the result of
our review. Below, we discuss each threat.

Buffer Overflow. When writing attacker-controlled
variables to a memory buffer, the program may overwrite
memory regions, e.g., the memory stack, resulting in var-
ious security issues, from memory corruption to arbitrary
code execution.

Division by Zero. Attacker-controlled variables can
also be used in divisions, resulting in divisions by zero,
which are undefined and cause a hard crash of the pro-
gram. Attackers can exploit this vulnerability to conduct
persistent denial-of-service attacks by repeatedly trigger-
ing the bug after restarting the application.

Format String Attacks. The C printf functions
family can print messages with dynamic values using
special string format identifiers, e.g., %s for strings. When
attacker-controlled variables reach one of these functions,
the attacker can inject such identifiers resulting in memory
read operations or, in certain cases, overwriting memory
regions.

Integer Overflow. Attacker-controlled variables can be
used to create numeric values outside the range of its data
type, resulting in unexpectedly small, large, or negative
numbers. Attackers can exploit this behavior by tampering
with the logic, increasing resource usage, e.g., the number
of iterations of a loop, or altering the size of memory
allocations.

3

Memory Leak. Not freeing allocated memory after its
use can threaten long-lasting processes like web servers or
daemons, where attackers can repeatedly call the affected
component, constantly increasing memory consumption.
Such an attack eventually exhausts available resources,
resulting in a denial of service or a process crash out of
memory.

Null Pointer Dereference. Several functions and APIs,
including malloc and CPython, return a null pointer to
indicate when an error occurred. If an attacker is able to
reliably trigger an error condition and create a null pointer
that is dereferenced in a later operation, they can cause a
hard crash of the application, leading to a denial of service
scenario and thus an availability violation.

Use After Free. After freeing a memory chunk, the
corresponding address space is returned to the list of free
chunks and can be used for subsequent allocations. There-
fore, if an attacker has control over a pointer dereferencing
an already freed memory region, they can read or corrupt
sensitive information belonging to a later allocation.

3. CHARON

In this section, we describe CHARON, a static analysis
framework for security testing of polyglot packages. Given
as input the source code of a package, it first performs
a series of preprocessing tasks (e.g., code normaliza-
tion, language identification) and then creates a graph-
based representation of the program under test, capturing
control and data flows spanning function calls, various
files and multiple languages. To achieve this, CHARON
starts by constructing distinct graphs for both the high-
level and low-level programs, producing a unified code
representation for all of them [33]. Then, CHARON
links elements of the two graphs together and establishes
cross-language interconnections, accounting for function
calls and data flows across language boundaries. Finally,
CHARON traverses the resulting graph to search for
potentially insecure program properties and outputs the
results. CHARON provides a comprehensive catalog of
built-in queries for vulnerability definitions presented in
our threat model (see, i.e., §2.2). For example, it can
automatically query the presence of unvalidated data flows
from attacker-controlled inputs to security-sensitive in-
structions, considering common types of sanitization oper-
ations applied on data flows. Figure 2 depicts an overview
of the CHARON’s architecture. The rest of this section
details each of the components of our framework.

3.1. Preprocessing

To be able to run CHARON at scale over hundreds of
thousands of packages, it can optionally perform a series
of package preprocessing steps. Specifically, the prepro-
cessing component performs two tasks. Firstly, it checks
the source code to identify the programming languages
employed within a package, thereby ascertaining whether
the package qualifies as a polyglot package. This initial
determination is also essential for triggering the appropri-
ate graph construction module. Secondly, for optimization
purposes, it assesses whether the package contains any
security-sensitive instructions based on the vulnerability

definitions outlined in §2.2. This proactive check aims to
circumvent unnecessary processing steps in cases where
security-sensitive instructions are absent, aligning with
the optimization strategies employed by other graph-based
code analysis approaches [5, 9, 18, 34].

3.2. Data Modeling

The data modeling component creates a graph-based
model of the preprocessed source code, leveraging a mod-
ified engine of Joern [9, 35], as discussed below.
3.2.1 CPG Construction. Code Property Graphs
(CPGs) [5, 9] are graph-based representations of code
that capture both the structure and behavior of programs,
consolidating multiple static code representations, e.g.,
Abstract Syntax Tree (AST), Control Flow Graph (CFG),
and Program Dependence Graph (PDG). These repre-
sentations collectively model the hierarchical structure
of the program’s syntactic constructs, the sequence and
conditions governing instruction execution, and the data
flow and control dependencies among program statements.
CHARON uses and extends the concept of CPGs, simi-
larly to other state-of-the-art code analysis tools (e.g., [34,
36]). Starting from the preprocessed source code of a
package, CHARON constructs one CPG for the high-level
program and another CPG for the low-level code, which
are generated independently. CHARON relies on the Joern
CPG specification [33, 37] to produce a unified syntax tree
for the AST of the constructed CPGs of Python, JavaScript
and C/C++ programs, which facilitates the process of
creating graph traversal queries.
3.2.2 CPG Linking. After creating CPGs for the script
and native code, CHARON analyzes them to discover
control and data flow edges connecting the two programs.
Specifically, it looks for instructions that call a function
of the other part of the program or return information in
response to such function calls. As a result, CHARON
creates a unified CPG representation, which we call a
Polyglot Property Graph (PPG). PPGs can handle bidi-
rectional calls and context switches between script and
native code, offering edges that model data dependencies
and calls across language boundary. Algorithms 1 and 2
summarize the CPG linking procedure to generate a PPG,
starting from the script and native CPGs. At a high level,
they operate in two stages, where they model the transfer
of control and data propagation: 1) from script program to
native code, and 2) from native code to the script program,
as detailed next.

Edges from Script to Native Code. Native extensions
enable the invocation of their API-exposed functions from
script code. This necessitates extensions to explicitly de-
clare or expose accessible functions through API calls,
specifying the target function and its corresponding name
in the script code (Cf. §2.1). To systematically identify
potential cross-language call candidates, Algorithm 2 first
searches the AST for such API function expose instruc-
tions in the native code (line 2). These instructions should
follow the syntax presented in §2.1 in order to make
functions in the native code callable by the scripting
program. For each API expose instruction, the algorithm
extracts the function pointer/identifier and traces the CPG

4

CPG Linking

CPG Construction

Preprocessing

Sanitization

Data Modeling

PPGs

Packages

Flows

Optimization Steps

Polyglot Check

Vulnerability Analysis

Code

JS

Pyth. C/C++

C/C++JS Pyth.
Language Boundary

sink(X)

X=input()

Polyglot Edge Vuln. Flow

Vuln. Path
Vuln.

Query DB

Backward
Traversal

Figure 2: Architecture of CHARON. Legend: CPG = Code Property Graph, PPG = Polyglot Property Graph.

following data flow edges to locate the actual function
declaration (lines 4-5).

Then, it establishes a map calleesNative to store
potential callees, keeping track of the function signature
(e.g., method name, class, etc) and its declaration (lines 7-
9). CHARON supports functions defined in global scope,
namespaces, class methods as well as macros. For ex-
ample, for a method F defined in class C, the signature
would be the string ‘‘C:F’’. If the API instruction
exposes F to the script code with an alias name, say
G, then the callees map stores the alias name instead.
In addition, API expose instructions that make declared
functions invokable by the scripting program can happen
in an inter-procedural context. CHARON supports these
cases by tracking function identifiers specified in these
instructions across function boundaries. The complete list
of supported expose APIs in C++ that mark a function as
invokable in Python and JavaScript are in Table 8.

Finally, to detect and connect cross-language edges
from script to native code, Algorithm 2 calls the Ad-
dXLEdges() routine of Algorithm 1 (line 8). This rou-
tine searches the script code CPG for call expressions us-
ing any of the function names in the previously-generated
callees map (lines 3-5), and create a call edge between
the two CFG nodes of the callee-caller and PDG data
dependency edges for the invocation variables (line 6-
10). Upon identification, these edges allow CHARON to
enhance its data flow analysis, successfully traversing the
language boundary.

To illustrate this process, the example in Figure 1
exposes two native functions to the script call inter-
face, i.e., init() and prep(). Both functions are
exposed with the PyMethodDef API without using
any pointers (i.e., the function declaration occurs in the
same instruction). Therefore, the function name pointer
analysis in line 6 returns the same instruction. After-
wards, Algorithm 2 creates a callees map, associating
each function name exposed to the script code to the
function definition in the native code, with the signature
‘global:prep’ mapped to the prep() function, and
the signature ‘global:init’ mapped to the init()
function declaration. Note that the ‘global’ string suggests
that both functions are defined in the global scope. In the
example in Figure 1, the strcpy() call expression in
_pack.c accepts incoming values from the arguments of
prep(). Since prep() has been identified as a script-
exposed function, Algorithm 2 checks for potential call
expressions in the script code using the corresponding

Algorithm 1: Add Cross-Language Edges Routine

1 Function AddXLEdges(cpg, callees)
2 callEdges, pdgEdges← []
3 for c in call expressions(cpg) do
4 k ← get signature(c.name)
5 if k in callees then
6 callee← callees[k]
7 callEdges.append([caller, callee])
8 for i← 1 to c.args.length do
9 e← [caller.arg[i], callee.param[i]]

10 pdgEdges.append(e)

11 return callEdges, pdgEdges

name in the callees map. Then, it discovers a matching
prep() call in _internal.py, and connects a call
edge between the caller-callee CFG nodes as well as
a PDG data dependency edge to link variable val in
_pack.c to tmp in _internal.py.

Edges from Native to Script Code. Polyglot programs
may also perform the inverse scenario, where native code
invokes functions situated in the script code. For example,
in Figure 1, the pack() function in _internal.py
is invoked from _main.c via an API call using the
PY_CALLMETHOD() function. Algorithm 2 also handles
this scenario by adopting a nearly mirrored approach
(lines 9-12). First, it searches the script CPG for all
function definition nodes, creating a callee map of func-
tion signature-definition pairs. This is because contrary
to the previous scenario, there is no syntactic distinction
between the script functions in terms of their exposure
to native code, and developers can invoke any function.
Therefore, Algorithm 2 retrieves all function definitions
from the AST (lines 9-10) and stores them in a map
calleesScript (lines 11).

Then, it searchers the native code for call expressions
matching one of the entries in calleesScript map by
invoking the AddXLEdges() routine (line 12). Similarly
to the previous case, CHARON connects a call edge
between the two nodes and a PDG data dependency edge
between the caller passed arguments and callee parameters
upon identification.

3.3. Vulnerability Analysis

Given the PPG of a package under test, we now show
how to use it to study program properties and detect
vulnerabilities automatically.

5

Algorithm 2: CPG Linking Algorithm

Input : cpgNative, cpgScript
Output: callEdges, pdgEdges

1 calleesNative, calleesScript← {}
2 e← get function expose instructions(cpgNative)
3 foreach i in e do
4 p← extract pointer(i)
5 f ← trace data flow(p)
6 k ← get signature(f)
7 calleesNative[k]← f.declaration

8 callEdges, pdgEdges←AddXLEdges(cpgScript, calleesNative)
9 foreach f in get functions(cpgScript) do

10 k ← get signature(f)
11 calleesScript[k]← f.declaration

12 callEdges, pdgEdges+=AddXLEdges(cpgNative, calleesScript)

3.3.1 Graph Traversals. Graph traversals provide a way
to navigate the complex relationships and dependencies
within a software program, enabling analysts to extract
meaningful information about the code syntax and se-
mantics, including the detection of security vulnerabili-
ties. CHARON supports traversals in the Joern querying
language [38, 39], which is based on the Gremlin lan-
guage [40] under the hood. CHARON’s querying lan-
guage uses a unified syntax tree specification [33, 37]
for different programming languages, which facilitate the
creation of graph traversals. The primary design choice
of using graph databases is driven by performance; they
can efficiently manage large graphs that are challenging
to store and process purely in memory or with traditional
databases.
3.3.2 Studying Polyglot Program Properties. Given a
PPG as described in §3.2, CHARON enables analysts to
define and execute arbitrary graph traversals. Specifically,
analysts can run queries to identify target graph patterns
(i.e., nodes, edges and relationships) matching a specific
property or vulnerability. For example, it enables them
to conduct data flow analysis, reachability analysis, and
points-to analysis, or identify inter-procedural method in-
vocations and perform analysis of control flow transfers,
which is necessary for the detection of security vulner-
abilities. In the remainder of this section, we show how
we instantiated CHARON to detect the vulnerabilities we
presented in §2.
3.3.3 Vulnerability Detection. Starting from the con-
structed models of §3.2, we formulate the vulnerabil-
ity detection task as a series of PPG traversals. These
traversals can be divided in four general categories: (i)
traversals that identify attacker-controlled program inputs
(i.e., parameters of API functions in script code), here-
after called sources; (ii) traversals that identify security-
sensitive instructions for each vulnerability in our threat
model of §2.2, hereafter sinks; (iii) traversals that perform
data flow analyses from sources to sinks that may cross
the language boundary; and finally (iv) traversals that
determine if mitigations are in place for each vulnerability
which affect the detected data flows. The rest of this
section details each step.

Finding Source Nodes. In our analysis of NPM and
PyPI packages, we consider parameters passed to pack-
age export functions as our primary input sources . To

pinpoint these sources, our CPG queries begin by iden-
tifying function export statements at the package level,
which detail the function identifiers or pointers intended
for export. We then trace these identifiers or pointers to
their corresponding function declarations and extract the
parameters from function declarations, marking them as
our sources in data flow analysis. This method ensures a
thorough identification of entry points (untrusted inputs)
in the packages under examination.

Finding Sink Nodes. As the next step, CHARON de-
fines and runs a comprehensive catalogue of graph queries
to identify sinks in the native code which corresponds to
each of the vulnerabilities of our threat model, storing the
resulting node information. The complete list of supported
sinks in our prototype is in Table 2.

Polyglot Data Flow Analysis. CHARON analyzes
the propagation of the data flows in the program by
backtracking the PDG and call edges one by one, also
across the language boundary, since PPGs contain cross-
language edges (Cf. §3.2.2).

To identify the vulnerabilities described in our threat
model of §2.2, CHARON conducts one or several data
flow analysis queries. Specifically, for vulnerabilities such
as buffer overflow, division by zero, format string errors,
and integer overflow, CHARON executes a single data
flow analysis for each type. This analysis determines
whether an input source reaches critical sinks in the code,
such as a memory buffer, a division instruction, a format
string operation, or an integer assignment.

However, the analysis becomes more intricate for other
types of vulnerabilities. For instance, null pointer derefer-
ence involves two distinct data flow analyses: first, tracing
the path from an input source to an API that returns a null
pointer, and second, tracking that null pointer to where it
is dereferenced in the code. Use After Free vulnerabilities
require three linked data flows: the source reaching a
pointer to a memory address, which then reaches a free
operation, and finally leads to a dereference of that freed
pointer. Memory leaks represent an even more complex
challenge. Here, the analysis starts with the input source
reaching a memory allocation instruction, and checking if
in all following data flow paths, there are no instructions
freeing that allocated memory (i.e., N data flow analyses),
highlighting the paths that contribute to the memory leak.
Even if there are data flows between a source and sink,
mitigation instructions along or near the flow may prevent
the occurrence of a vulnerability (e.g., input validation
checks).

Finding Mitigations and Input Validation Nodes.
CHARON defines and executes a set of graph traversals
to identify operations in both script and native code con-
taining a sanitization instruction. The goal of this step is
to exclude data flows that are properly validated from the
output. CHARON can identify various types of input val-
idation operations, including explicit input length checks,
equality comparisons against constants, divisor variable
not zero checks, mitigations stemming from loop con-
ditions (e.g., controlling divisors or tainted parameters),
pointer reference checks such as against the NULL value,
casting to unsigned type, dynamic buffer allocations based
on input size such as malloc(strlen(input)), and
finally checks ascertaining the memory allocation size.

6

Sink API op
er

at
or

.d
iv

is
io

n

op
er

at
or

.m
od

ul
o

pr
in

tf
()

sp
ri

nt
f(

)

fp
ri

nt
f(

)

sn
pr

in
tf

()

dp
ri

nt
f(

)

op
er

at
or

.a
dd

iti
on

op
er

at
or

.m
ul

tip
lic

at
io

n

m
em

cp
y(

)

m
al

lo
c(

)

ca
llo

c(
)

re
ad

()

st
rc

py
()

st
rc

at
()

fr
ee

()

Mitigations
Vulnerability JS Pyth. C++ Total
Div by zero 1 1 2 4
Fmt string 2 2
Sprintf overflow 1 1 3 5
Strcpy/strcat overflow 1 1 2 4
Int. overflow 1 1
Memcpy overflow 1 1 2 4
Mem leak 2 2
Null pointer dereference 1 1 4 6
UAF 3 3

Total 5 5 21 31

TABLE 2: The complete list of sinks supported by CHARON for each vulnerability and the number and context of mitigation queries per vulnerability
class. Legend: = applicable.

CHARON also implements vulnerability-specific mitiga-
tion queries. For example, sprintf() calls tainted with
attacker data that do not have the string specifier %s are
considered mitigated against buffer overflows, since they
mangle the input value, or shorten it to fit into the buffer
(i.e., avoid the attacker‘s arbitrary length capability). Simi-
larly, memory allocations for which PyArray_ENABLE-
FLAGS() is called with the flag NPY_ARRAY_OWNDATA
do not lead to a memory leak vulnerability. In total,
CHARON can perform PPG queries to detect 31 different
types of potential mitigations for vulnerabilities outlined
in §2, leveraging the CFG, PDG, AST, and the call graph.
Table 2 shows the distribution of queries across different
programming language contexts and vulnerability classes.
These queries can reduce potential false positives of
the vulnerability detection task. For example, consider a
scenario where the script code includes a length check
on the input before calling a native API from C/C++,
which itself lacks any length checks, like in the case of
a memcpy() instruction. In such instances, CHARON
identifies and marks the relevant PPG node associated
with the script code. This marking serves to emphasize
an input validation operation. Therefore, when checking
for a memcpy overflow vulnerability, CHARON has the
capability to filter out sanitized data flows from the results.
This capability contrasts with a native-only taint analysis
approach, which is more likely to report such data flows
as potential vulnerabilities.

3.4. Implementation

We implemented our polyglot static analysis approach
over Joern [9] in 4,421 LoC (excluding comments and
white spaces), where we used Scala and the Joern SAST
engine [35] to define and execute CPG queries, such
as reachability and data flow analyses. We also use
c2cpg [41], jssrc2cpg [42] and pysrc2cpg [43] libraries to
build C/C++, JavaScript, and Python CPGs, respectively.
CHARON combines the generated CPGs following the
algorithm presented in Algorithm 2 to generate a PPG
and provide an interactive and API-driven frontend for
analysts to run their queries over the PPG. Finally, we

implemented the preprocessing steps outlined in §3.1, and
the orchestration of the data modeling tasks in Python,
which are necessary for scalability reasons.

Enhancements to Static Analysis Engine. Unfor-
tunately, we could not use Joern as-is, and encoun-
tered several limitations during our experiments of §4,
particularly when Joern generates the inter-procedural
data flow and call graphs as a part of the CPG con-
struction. For example, we observed that the c2cpg li-
brary fails to create call edges to methods defined in
different files. It also generated incorrect PDG edges
for unrelated nodes and overlooked edges in cer-
tain types of assignments (e.g., String::Utf8Value
address(arr[0])), reassignments and dereferencing
scenarios. Likewise, the jssrc2cpg library faced challenges
in creating call graph edges when using the ES6 JavaScript
features. Finally, pysrc2cpg lacked inter-procedural call
graph and PDG edges, and frequently encountered crashes
during the generation of Python-based CPGs.

In total, we identified nine implementation issues across
these three CPG generation libraries, which we respon-
sibly disclosed to the Joern creators, Shiftleft [44], all
of which were confirmed. As of now, Shiftleft suc-
cessfully patched six out of the nine reported bugs.
For the remaining cases, particularly the ones affecting
the PDG generation, Shiftleft responded that they are
known issues (see, e.g., [45]), which they plan to fix
soon. However, for all remaining issues, we patched
or tweaked the implementation of Joern to mitigate
them. For example, alongside data flow queries from
sources to sinks, CHARON follows dataflow edges until
a problematic code pattern [46] is hit. Then, it runs an
AST query to determine the correct continuation point,
when possible, and continue dataflow analysis from there.
Similarly, instead of only relying on call graph edges,
CHARON runs an additional AST query to determine
call points (i.e., cpg.call(method.name) instead of
method.callIn) to reason about potentially missing
call edges.

7

npm PyPI Total
LoC # LoC # LoC

All packages 1.6M - 318K - 1.9M -
With native code 8.7K - 4K - 12.8K -

Contain sinks 8.2K 657M 3.6K 239M 11.8K 896M
PPGs 7.8K 477M 3.3K 196M 11.2K 673M

TABLE 3: Overview of our dataset and preprocessing steps.

4. Empirical Evaluation

We now assess the efficacy and practicality of
CHARON in detecting the vulnerabilities of §2.2 in the
ecosystem of two popular programming languages, i.e.,
npm for JavaScript and PyPI for Python.

Overview. We collected and processed over 1.9M
packages from npm and PyPI ecosystems and identified
11.2K packages containing both scripting (i.e., Python
or JavaScript) and native (i.e., C/C++) code, as well
as at least one security-sensitive instruction. Then, we
instantiated CHARON on each of the 11.2K packages,
and generated a PPG for for each one, covering about
673M LoC. After analyzing these packages following
the approach presented in §3.3, CHARON identified a
total of 17,268 potentially insecure data flows across 269
packages in both npm and PyPI. Finally, we demonstrate
the exploitability by focusing on a random subset of the
data flows to create proof-of-concept exploitations for 34
packages, including popular ones like barcode4nodejs and
spinsfast, resulting in critical consequences like arbitrary
code execution, denial of service, memory corruption, and
information leakage.

Before presenting our findings, we discuss our method-
ology and properties of the problem space (§4.1). Then,
we report the results of our experiments (§4.2), and finally,
conclude with the analysis of CHARON’s results.

4.1. Experimental Setup and Methodology

4.1.1 Data Collection and Preprocessing We down-
loaded all npm and PyPI packages (i.e., 1.9M) in May
2021 and performed the data preprocessing steps de-
scribed in Figure 2. As a first step, we checked in the input
packages for the presence of both native and script code
and filtered out the package otherwise. We keep packages
that contain C/C++ source code and include one of the
following headers: node.h, napi.h, and nan.h for
JavaScript, Python.h for Python. This resulted in a total
of 12,856 packages, of which 8,757 are npm packages,
and the remaining 4,099 are PyPI.

Then, we checked if the package source code contained
any security-sensitive instructions, i.e., sinks. If the pack-
age includes a sink, CHARON analyzes it, searching for
vulnerabilities; otherwise, it discards it. In total, 11,859
packages contain at least one sink call, of which 8.2K are
npm packages and 3.6K are PyPI. Table 3 summarizes our
data collection and preprocessing steps.
4.1.2 Model Construction After identifying packages
with native code and sensitive sinks, CHARON generated
one PPG for each package. In total, CHARON success-
fully generated PPGs for 11,270 packages, as shown in
Table 3, and failed to generate PPGs for 589 packages.
These failures occurred because the underlying static anal-

npm PyPI Total
Vulnerability Flows Pkgs. Flows Pkgs. Flows Pkgs.

Div. by zero 211 22 3,979 16 4,190 38
Fmt string 1 1 66 3 67 4
Int. overflow 715 97 1,855 34 2,570 131
Memcpy overflow 115 13 1,154 7 1,269 20
Mem leak 339 34 2,242 25 2,581 59
Null pointer deref. 4 4 3,486 23 3,490 27
Sprintf overflow 9 2 191 8 200 10
Strcpy/strcat overflow 86 55 2,648 13 2,734 68
UAF 37 2 130 2 167 4

Total 1,517 173 15,751 96 17,268 269

TABLE 4: Overview of vulnerable data flows detected by CHARON.
The table shows the fraction of the data flows crossing the language
boundary for different vulnerability types.

ysis engine that CHARON relies on (i.e., Joern [35]) broke
during the construction of CPGs for either the native or
script program. We note that CHARON’s implementation
is influenced by the limitations of the individual CPGs
generated by Joern.

4.2. Evaluation Results

After generating PPGs, we run cross-language data
flow and control flow reachability analysis queries over
them for vulnerability discovery of §3. In this section, we
present our results and findings.
4.2.1 Vulnerable Data Flows In total, CHARON iden-
tified 17.2K data flows reaching a sensitive sink in 269
packages, which crossed the language boundary at least
once. We observed that the number of data flows in the
PyPI ecosystem is ∼10 times greater than npm’s. How-
ever, npm vulnerabilities are more widespread, impacting
173 packages compared to 96 PyPI packages.

When looking at the distribution of data flows over vul-
nerabilities, the majority of data flows are division by zero,
accounting for 4,190 flows across 38 packages in total,
which is followed by 3,490 null pointer dereference issues
affecting 27 packages. In comparison, the least frequent
data flows belong to format string vulnerabilities, account-
ing for 67 flows in only four packages. Similarly, when
looking at the prevalence of issues, the most widespread
vulnerability is integer overflow, affecting 131 packages
with over 2.5K flows in total, whereas the least widespread
issues are format string and use-after-free vulnerabilities,
occurring both in only four packages. Table 4 summarizes
our findings.
4.2.2 Vulnerability Verification and False Positives
Given the substantial volume of data flows detected by our
tool, we implemented a semi-automatic method to verify
them. First, we used an automated approach to cluster data
flows based on their common prefixes, particularly in the
sections of native code (backward data flow analysis). This
step was crucial because numerous data flows in script
code are often linked to a single prefix in native code.
If this prefix turns out to be incorrect (a false positive),
then all associated data flows are also false positives (i.e.,
amplification).

Following the automated grouping, we conducted a
manual review of the prefix segments to determine their
accuracy. If identified as a false positive, we then marked
all connected flows accordingly. Conversely, if the prefix
was verified as a true positive, we proceeded to manually
inspect the connected flows within the scripting program,

8

Figure 3: Distribution of false positives per cumulative number of
packages.

25 50 75 100 125 150 175 200
Cumulative Number of Packages

0

500

1000

1500

Fa

lse
 P

os
iti

ve
s

NPM
PyPI
Total

Flows
Path PyPI npm

CASE 1 all(FP) + FP 10,391 895

CASE 2 mix(FP, TP) + TP 152 38
- FP only 152 17
- TP only 0 21

CASE 3 all(TP) + TP 5,208 584

TABLE 5: Overview of XL data flow paths and FP amplification.

validating the absence of proper mitigations and the po-
tential impact on security. Our approach identified 2,021
common prefixes in native code, with approximately 66%
(1,348 prefixes) ultimately classified as false positives.
In total, out of the 17.2K data flows, we marked 5,813
flows across 116 packages as true positive vulnerabilities,
observing again a false positive rate of about 66%.
4.2.3 Analysis of False Positives When looking at the
underlying reasons for FPs, the side-effects of wrong
cross-language edges that were added by CHARON was
negligible, accounting for only 0.1% of the FPs. We
found that these FP cross-language edges were added for
few cases where a native function export was assigned
a name identical to an unrelated script function located
in a different context, which created naming confusion
for CHARON. In stark contrast, the rest of the FPs (i.e.,
99.9%) were caused by traditional static analysis issues,
such as missing PDG and CFG edges, pointer analysis,
array manipulations, and the inability to detect properly
mitigated data flows due to path-sensitive propagation
of program values and dynamic program features like
dynamic buffer allocations, which are similarly applicable
for a single-language taint analysis approach. We note that
that the capabilities of CHARON’s implementation are
constrained by the limitations inherent in the underlying
(industry-level) static analysis engine we used (i.e., Joern).

Finally, we observed that a significant fraction of FPs
are concentrated in only a few packages, where seven
packages are causing over 73% of FPs (i.e., 8,451 flows)
with four out of these packages having no true positive
data flows at all. Figure 3 illustrates this fact, where we
can see a sudden spike in FPs in the plot per increase
of only few packages. Table 9 shows the distribution of
packages across false positive bins.
4.2.4 Analysis of Amplification Effect We observed that
the amplifying nature of connecting data flows of two
programming languages has a small amplifying impact
on the overall number of false positives that CHARON

encounters, with only 169 data flows being comprised of
both a false positive and true positive part in script and
native contexts, respectively, compared to over 10K data
flows with false positives in both script and native part.
Table 5 presents an overview of different path combina-
tions across npm and PyPI ecosystems.
4.2.5 Accuracy of PPG Cross-Language Edges We also
performed comprehensive manual experiments to estimate
the accuracy of cross-language edges in the discovered
data flows. After reviewing 5,982 cross-language edges
included in the PPGs, we found only 17 edges that were
a FP, i.e., 0.28%, which is negligible. Since CHARON
links cross-language call edges based on the call names
defined in the native code access interface, it is susceptible
to naming confusion if one or more native methods are
overloaded in the script graph. For instance, some Python
extensions defined a fallback implementation that is used
in case the native code fails to load, causing CHARON
to draw additional, incorrect edges to similarly named
Python methods.
4.2.6 Comparison with Single-Language Taint Analy-
sis We compared our polyglot code analysis approach,
CHARON, with a traditional single-language, native-only
taint analysis method based on the Joern engine [35].
Assuming that each value passed through the language
boundary is attacker-controlled, the native-only approach
generated 3,066 potential vulnerability alerts; however,
manual analysis revealed that only 922 of them are true
positives, leading to a false positive rate of about 70%. In
comparison, CHARON identified ∼6x more true positive
vulnerabilities, totaling 5,813. Furthermore, CHARON
achieved a lower false positive rate of 66% (∼4% de-
crease), which is primarily due to identification of mitiga-
tions in high-level code. Overall, we found that polyglot
code analysis reduces both false positives and negatives.
Table 10 (appendix) summarizes the results.

Although the 5,813 flows reported by CHARON ulti-
mately converge in the same 673 native prefixes, they are
distinct attacker-controlled flows, originating from differ-
ent package exports and following unique paths through
the script-level code. Since the native code is not a stan-
dalone library, but part of the package itself, sanitization
could occur at different points within the package, includ-
ing the script code. Thus, introducing input validation on
one flow does not necessarily mitigate others and each
flow needs independent consideration. Consequently, each
alert raised by CHARON represents a distinct vulnerabil-
ity, even if the sink is the same. Moreover, reporting flows
individually is important, since dependent applications
may use one vulnerable entry point, but not another. Since
native-only analysis lacks visibility over the script-level
code, it is unable to create a list of vulnerable package
entry points. As a result, properly reporting cross-language
security issues in native extensions would be unfeasible
without substantial manual effort. In contrast, CHARON
operates on the entire source code and is thus able to
overcome this limitation.

Despite finding more distinct vulnerable flows, the
5,813 alerts issued by CHARON originated from only
673 native prefixes, implying that the native-only anal-
ysis discovered 249 additional true positive prefixes. A
closer inspection revealed that 123 of these prefixes were

9

npm PyPI Total
Vulnerability Man. Exp. Man. Exp. Man. Exp.

Div by zero 3 1 8 2 11 3
Fmt string 1 - - - 1 -
Int. overflow 27 1 2 - 29 1
Memcpy overflow 9 - 5 - 14 -
Mem. leak 17 8 12 1 29 9
Null pointer deref. 3 - 11 - 14 -
Sprintf overflow - - - - - -
Strcpy/strcat overflow 25 20 2 1 27 21
UAF - - - - - -

Total 83 30 33 4 116 34

TABLE 6: Summary of created exploitations. Legend: Man=Manually
confirmed packages, Exp= Exploited packages.

Vulnerability Code Exec DoS Inf. Leak Mem. Corr.

Div. by zero - # 3/3 - # - #
Int. overflow - G# 1/1 - # 1/1
Mem. leak - # 11/9 G# - # - #
Strcpy/strcat overflow 1/1 G# 23/21 - # 23/21

Total 1/1 38/34 - 24/22

TABLE 7: Number and impact of exploits created per vulnerability type
and package. Each entry shows a value N /M representing N exploits
across M packages. Circles represent whether a vulnerability could be
exploited for an attack. Legend: = Applicable; G#= Partly applicable;
#= Not applicable.

ultimately unreachable to attacker-controlled data in the
script domain and thus validly discarded by CHARON.
On the other hand, the remaining 126 lost prefixes could
receive attacker data and constitute false negatives. Still,
CHARON was able to correctly identify and link the
cross-language edges for all affected PPGs, indicating that
these false negatives are not intrinsic to our cross-language
analysis approach.
4.2.7 Contribution of Polyglot Analysis in Script Mit-
igations One of the key advantages of using a polyglot
code analysis approach is its ability to observe how native
APIs are called in the scripting program and whether
their inputs are properly sanitized, that is, information
which a native-only analysis approach does not have
access to. This capability allows it to detect mitigations
and other input validation measures in script code, sig-
nificantly reducing the occurrence of false positives in
a native-only single-language taint analysis approach. In
our experiments, CHARON successfully identified 2,520
explicit mitigations in script code. Additionally, CHARON
discovered that 59 alerts were unfounded due to the
susceptible function not being used in the script code,
and that the attacker lacks control over the input value
in 27 cases. In total, CHARON managed to eliminate
2,606 false positives a native-only approach would have
reported, emphasizing the potential of polyglot program
analysis in preventing false positives.

4.3. Exploitations

Starting from the 116 packages with manually veri-
fied data flows, we investigated their exploitability by
checking the program behaviour and testing candidate
attack payloads. Specifically, for each package, we create
a small script calling the function leading to the vul-
nerable LoC, feeding it with manually-crafted input to

trigger the vulnerability. In the majority of the cases,
we verified the existence of a vulnerability by causing
a hard crash, e.g., due to a division by zero, a null pointer
dereference or a memory corruption following a buffer
overflow. To detect memory leaks, we repeatedly call the
affected sub-routine while monitoring the memory usage
of the process. Finally, we assessed the maximal impact
of buffer overflow vulnerabilities on native extensions
by checking the circumstances under which an attacker
can pass shellcode across the language boundary to gain
arbitrary code execution.
4.3.1 Results We were able to create 63 proof-of-
concept exploitations in 34 packages in total, including
popular ones like bluetooth-serial-port, bar-
code4nodejs, and spinsfast with far-reaching con-
sequences like code execution, memory corruption, and
DoS. For the remaining 82 packages with confirmed data
flows, we were unable to create an exploit. However, we
note that several packages failed to compile in our test en-
vironment due to dependencies on deprecated OS library
versions. Furthermore, we did not test exploitability for
packages where dependencies were not freely available.
In addition, achieving completeness in the manual search
for exploits is a challenging task, demanding a profound
understanding of each package’s semantics and function-
ality. The fact that we could not find an exploit does not
mean that an exploit does not exist. For these cases, we
verified that the data flows exists unconditionally, and a
determined attacker may still be able to find an exploit.
Table 6 summarizes the number of packages successfully
exploited for each vulnerability type and Table 7 shows the
impact of the generated exploits. In the following section,
we present a few case studies of the confirmed attacks.

4.4. Case Studies

In this section, we present a few manually vetted case
studies of the confirmed exploitations, which we have
responsibly disclosed to the affected vendors.
4.4.1 Node Bluetooth Serial Port Package The node-
bluetooth-serial-port2 package is a node module that fa-
cilitates communication over Bluetooth serial ports with
devices using Node.js. Figure 4 presents an excerpt of
a buffer overflow vulnerability we found in this pack-
age. In particular, we discovered that an input value
coming from the address argument of the find-
SerialPortChannel() API, which is defined in
bluetooth-serial-port.js, is written to a fixed
buffer with no length checks as a part of a strcpy
instruction in C/C++. This led to a buffer overflow vulner-
ability and we created a PoC exploit causing memory cor-
ruption. Furthermore, we were able to escalate this buffer
overflow vulnerability to arbitrary code execution (ACC),
during which we had to tackle several technical challenges
introduced by the language boundary, as discussed next in
§4.5.
4.4.2 Leaf-Blade Package leaf-blade3 is an HTML tem-
plate engine developed in Python. It offers an input
sanitizer that escapes the HTML template syntax char-
acters contained in the input through its Parser API.

2. https://www.npmjs.com/package/node-bluetooth-serial-port

10

Figure 4: CVE-2023-26109: A buffer overflow vulnerability in
node-bluetooth-serial-port.

CHARON discovered a memory exhaustion vulnerability
in the HTML parser of this package, as illustrated in
Figure 5. The root of the matter lies in the escape_-
content() function, which allocates a heap region for
file content. However, the package overlooks the crucial
step of freeing this region after its operation. The es-
cape_content() function in escape.c is in turn
imported and used in the Parser class in Python, leading
to a memory exhaustion vulnerability when the escape
method of the Parser class is invoked. Attackers can
exploit this vulnerability to obtain a resource-based DoS
attack by invoking the affected API many times. The data
exchange and communication between the Python and
C programs introduces a level of complexity that poses
challenges for automatic identification of this vulnerability
via traditional taint analysis techniques, requiring polyglot
security testing of the package.
4.4.3 MC3 Package The mc34 package is a Python
implementation of the Markov-chain Monte Carlo algo-
rithm. CHARON found a division by zero vulnerability
in the implementation logic of mc3, where the vulnerable
data flow spans across both the Python and C programs.
Figure 6 presents an overview of the vulnerability. The
function bin_array() in Python accepts an integer
binsize and pass it to the binarray() function in
C++, which in turn uses this number in two division
operations as denominator. However, the program does not
validate that binsize is not zero, leading to a division
by zero vulnerability.

4.5. Impact of Language Boundary on Ex-
ploitability

In our work, we explored whether or not the operations
at the language boundary hinder exploitation of vulnera-
bilities (Cf. 7). For example, we assessed the feasibility
of an arbitrary code execution attack on a minimalistic
clone of the node-bluetooth-serial-port package. To ease
exploitation in this case, we disabled Address Space Lay-
out Randomization (ASLR) on our VM and compile our
sample with an executable stack and no stack protector.

As a result, we successfully created an ACC exploit
starting from the buffer overflow vulnerability. However,
we observed that the language boundary in polyglot
Node.js packages introduces additional challenges for ex-
ploitability. This heightened difficulty arises primarily due

3. https://pypi.org/project/leaf-blade
4. https://pypi.org/project/mc3

to the UTF-8 encoding of Node.js strings, which adheres
to strict byte value sequences. While benign inputs pose
no issues, an attacker’s shellcode often faces rejection or
distortion because the instruction opcodes tend to create
invalid sequences. These sequences may manifest within
the opcode of a single instruction or emerge during the
linking process when chaining two instructions. In the
former scenario, attackers can circumvent the issue by
substituting instructions with invalid sequences for se-
mantically equivalent ones [47]. In the latter case, they
have the option to inject additional instructions between
existing ones, frequently utilizing the NOP instruction,
as its opcode is a common valid follow-up byte in se-
quences [47]. However, the chaining of NOP instructions
is constrained by the preceding byte’s value, requiring
attackers to regularly insert alternative instructions into
their NOP sled.

The final hurdle in the attack involves overwriting the
return address with a value that not only directs to the
shellcode or NOP sled but is also valid UTF-8. This
proves to be the most challenging aspect, as multiple
constraints come into play. Firstly, certain byte values are
nearly entirely restricted in UTF-8. One such restricted
value is 0xFF, which is particularly common in addresses.
0xFF may only appear at the beginning of a UTF-8
string and cannot be used when overwriting the return
address. Attempting to bypass this limitation, an attacker
may position the shellcode with a lengthy NOP sled after
the return address position and choose a valid address
with the smallest possible offset as the overwrite value.
However, depending on the address and architecture, the
smallest valid offset might be so extensive that the Node.js
interpreter rejects the attack payload for exceeding string
length bounds. This mirrors challenges faced in other
attack techniques, such as return-oriented programming
and return to libc [48, 49], which are subject to the same
set of restrictions.

4.6. Vulnerability Notification

We have notified the affected parties following the best
vulnerability notification practices [50]. For each affected
package, we created a detailed vulnerability report along
with one or more PoC exploitations. In the majority of the
cases, we used Snyk [51] as the point of contact to help
us with the disclosure process. In few cases, we contacted
the developers directly when that was not possible through
Snyk (e.g., for less popular packages). We also considered
reaching out to the package maintainers using alternative
channels, particularly Github’s confidential vulnerability
disclosure system, but found that the feature is disabled
in most of the affected repositories.

At the time of writing this paper, 13 out of the 34 pack-
ages confirmed our reports, with multiple CVEs already
assigned for the patched packages. In contrast, 21 email
notifications currently remain unanswered. In addition to
issuing reports for packages with PoC exploits, we also
notified the authors of the remaining projects with insecure
data flows. We are currently awaiting a response. We
observed that several of these packages appear to be
poorly maintained, as their version and commit histories
show no recent activity.

11

Figure 5: Excerpt of a memory exhaustion vulnerability in the parser of leaf-blade HTML template engine. Arrows represent data flows between
the variables.

Figure 6: A division by zero in the binarray logic of mc3.

5. Discussion

In this section, we put our results into perspective, we
discuss limitations of CHARON and future work oppor-
tunities.
Support for Stateful Native Extensions. Our work shows
that a multi-language static analysis approach is essential
for security testing of scripting languages native exten-
sions. First, a polyglot approach enables the detection
of complex vulnerabilities that are due to the interplay
of cross-language API calls and back-and-forth context
switches between native and scripting programs, as ex-
emplified in Figure 1. We observed that such polyglot
approach can significantly enhance the identification of
vulnerabilities, yielding over six times more true positive
detections compared to single-language analyses, which
fail to enumerate the vulnerable entry points of the pack-
age. Second, our polyglot approach can detect mitigations
in high-level code (e.g., input validation) and thereby
reduce the false positives by about 4% compared to a
single-language taint analysis method (Cf. §4.2.6).
Advanced Program Analysis Features are Essential.

We observed that a flow-sensitive and inter-procedural
static analysis is necessary for vulnerability detection in
scripting languages native extensions (see, e.g., Figure 5),
particularly for complex vulnerabilities that require more
than one data flow analysis tasks, such as use-after-free,
null pointer dereference, and memory leak issues (Cf.
§3.3.3). As such, simpler static analyses like the one
proposed by Staicu et al. [10] only suffice for bugs di-
rectly related to the cross-language conversion, such as
type mismatching, and more advanced program analysis
features are necessary to detect the vulnerabilities outlined
in §2.
Extensibility to Other Programming Languages.
In this paper, we evaluated CHARON for
C/C++/JavaScript/Python. While our evaluation may
be specific to these languages, we designed our
methodology with generalizability in mind. In particular,
CHARON uses the Joern engine which provides the
same syntax tree specification for the CPGs of different
programming languages (see, i.e., [37]), making our
implementation likely adaptable to different language
combinations using build time variability. However, we
do not claim generalizability in this work.
Beyond Native Extensions. Cross-language code can
appear in many other contexts in scripting languages,
beyond native extensions. For example, most runtimes
have support for WebAssembly, offering a convenient way
to run efficient and portable low-level code. Extending
CHARON to WebAssembly would require a Joern fron-
tend for this language, but otherwise would be straight-
forward to implement, since this type of code is invoked
in a similar way to native extensions. On the contrary,
runtimes are often written in low-overhead programming
languages such as Rust or C++, and glued with scripting
code via bindings. While a lot of operations or API
calls in scripting code are eventually resolved to these
low-level code locations, extending CHARON to support
engine code is far from trivial, since the description of the
mapping between high-level and low-level is buried deep
into the runtime’s specifications or documentation, often

12

expressed in natural language only.
Dynamic analysis to improve Static. Dynamic analysis
could help filtering out false positives, but it requires
package installation and running automatically. However,
we observed that many in-the-wild packages fail to install
automatically due to various compilation errors and mis-
matched Node.js versions, hindering larger-scale analyses.
Limitations. The methodology illustrated by Algorithm 2
ensures a comprehensive approach to recognizing and
analyzing cross-language method invocations within na-
tive extensions, as it considers any potential relationship
between all the call expressions and function definition
nodes. However, we note that, similarly to other state-
of-the-art static analysis approaches [5, 9, 34, 36, 52],
CHARON does not completely handle dynamic function
calls and dynamic function definitions in the script code,
and is bound by the limitations and soundness properties
of the underlying Joern static analysis engine. Finally,
the cross-language linking algorithm of CHARON can
be confused into creating wrong cross-language edges in
specific configurations, although such cases only occurred
seldomly in our studied applications.
Open Science. We publicly release CHARON upon pub-
lication to benefit future research efforts5.

6. Related Work

In this section we discuss related work on low-level
security bugs in scripting languages and techniques for
containing or detecting such problems automatically.
Low-level bugs in scripting languages. For performance
reasons, scripting language runtimes are often imple-
mented in C/C++ and thus, may leak low-level bugs into
the scripting environment. There are various static [7]
or dynamic techniques [53] for identifying such bugs
automatically. Gross et al. [54] notice, however, that such
approaches must also take into consideration just-in-time
compilation, a language feature often used in scripting
languages. Of special interest for security analysis is the
binding layer that acts as the boundary between scripting
and low-level code. Brown et al. [8] were the first to
describe such security issues and propose simple static
analyses for detecting them. Dinh et al. [55] proposes
a fuzzing technique specially designed for testing this
type code. More recently, Staicu et al. [10] identify na-
tive extensions as another source of low-level bugs in
scripting languages. They propose a lightweight analysis
technique for JavaScript that analyzes data flows in the
two functions closest to the language boundary. To the
best of our knowledge, ours is the first systematic work
that analyzes low-level bugs in their surrounding context,
using inter-procedural analysis that can track values across
long dependency chains, possibly crossing the language
boundary multiple times.
Cross-language program analysis. Li et al. [56] find
that multi-language code is more likely to contain security
vulnerabilities. Thus, prior work proposed several cross-
language analyses for various pairs of languages: Java-
C [57–60], Java-JavaScript[61–64], Python-C [65], Go-
C [66], or PHP-JavaScript [67]. There is also work on

5. https://github.com/VainlyStrain/charon

designing generic cross-language solutions starting from
existing analysis frameworks. Arzt [68] proposes extend-
ing Soot by building new analyses front-ends, Youn [52]
discuss how CodeQL can be enhanced in a similar way,
and Kreindl [69] builds dynamic taint analyses in a
polyglot virtual machine. To the best of our knowledge,
none of this work supports the holistic analysis of cross-
language JavaScript or Python code combined with C/++
extensions. Staicu et al. [10] were the first to make a step
in this direction for JavaScript, but their analysis does not
support multiple crossings of the language boundary, and
it is flow-insensitive and limited to data flow analysis.
Similarly, Monat et al. [11] were the first to attempt a
principled solution for Python, but their heavy formal-
ism makes the approach impractical for most real-world
use cases. In comparison, CHARON is flow-sensitive,
inter-procedural, supports both JavaScript and Python,
and offers various analyses including data-flow analysis,
reachability analysis, pointer analysis, and identification of
mitigation nodes. Houdaille et al. [70] proposed a method
to generate a uniform, language-agnostic AST for code of
multiple languages, but they focused on syntactic code
analysis rather than tracking complex control and data
flows as CHARON does. Li et. al. [19] proposed Poly-
Cruise, a dynamic information flow analysis system for C-
Python programs. Similarly to PolyCruise, PolyFuzz [28]
is a dynamic fuzzer that tests multi-language programs
in C, Python, and Java using cross-language coverage
feedback, modeling the relationships between program
inputs and conditional predicates. Compared to CHARON,
PolyCruise and PolyFuzz use dynamic analysis, which
tends to have high FNs and fewer FPs. In addition, these
works evaluate a relatively small sample of packages when
compared to our work, i.e., PolyFuzz 30 and PolyCruise
12 packages.
Isolating unsafe code in scripting runtimes. An im-
portant strategy for reducing the damage caused by the
exploitation of low-level vulnerabilities is to contain their
effect. Abbadini et al. advocate for sandboxing native
extensions in Node.js [71] or Deno [72], using existing
Linux security modules like Landlock and eBPF. More-
over, Wyss et al. [73] and Wang et al. [74] propose
system call filtering for preventing unprivileged operations
in scripting language. Narayan et al. [75] design a sophis-
ticated solution at C++ level that integrates static infor-
mation flow analysis with lightweight dynamic checks to
isolate buggy parts of the runtime. Vasilakis et al. advocate
both for process-level isolation [76] and lighter language-
based techniques [77] for compartmentalizing scripting
language code. However, AlHamdan and Staicu [78] show
that language-based enforcement at scripting level is of-
ten easy to bypass. Scripting languages often allow in-
tegration with WebAssembly, which might also execute
vulnerable low-level code. While WebAssembly runs in
a highly-isolated environment, Lehmann et al. [79] note
that low-level bugs in WebAssembly might still lead to
security consequences. Thus, Michael [80] proposed a
novel memory-safety property that inform compiler-level
enforcement mechanisms that in turn prevent runtime
exploitation. Johnson et al. [81] highlight the importance
of verifying the interactions of such code with the outside
world. While in our work we focus on detecting low-level

13

bugs instead of preventing their exploitation, we note the
importance of deploying multiple layers of defense against
buggy low-level code in scripting languages.
Program analysis for security in scripting languages. In
recent years, there were many sophisticated program anal-
yses proposed for scripting languages. Backes et al. [5]
were the first to show that code property graphs can
be used for statically detecting vulnerabilities in PHP.
Subsequently, Pellegrino et al. [6] propose extracting such
property graphs from dynamic traces and expanding this
data structure across multiple application’s tiers to incor-
porate causality and state transitions. Similarly, Khoda-
yari and Pellegrino [3] propose hybrid property graphs, a
program representation that aggregates information from
both static and dynamic program analysis. Li et al. [1, 2]
propose object dependence graph, a data structure that
allows static analyses to reason about dynamically added
properties and prototype inheritance in JavaScript. There
is also great interest in the industry to build static analyses
for scripting languages, with prominent examples being
Facebook’s Pysa and GitHub’s CodeQL. Prior academic
work proposes enhancing such tools with dynamic taint
summaries [82] or with machine learning models that
leverage semantic information contained in the code [83].
CodeQL is also a prominent example of analysis that
can handle code written in different languages, albeit one
language at a time. Similarly, while Yamaguchi et al. [9]
first proposed code property graph for static analysis of
C/C++, their prototype Joern grew into a mature industrial
product that also supports languages like JavaScript or
Python. To the best of our knowledge, none of these work
performs cross-language static analysis and we are the
first to propose a polyglot approach that leverages code
property graphs.

7. Conclusion

In this paper, we presented CHARON, a polyglot code
analysis framework to detect vulnerabilities in scripting
languages native extensions. Our approach can track the
propagation of program properties like control and data
flows across different programming languages. We in-
stantiated CHARON over the npm and PyPI ecosystems,
processing over 673M lines of code and creating PPGs
for 11.2K polyglot packages. CHARON detected 5,813
confirmed data flows across 116 packages, out of which
we created 68 PoC exploitations across 34 packages, in-
cluding popular ones like bluetooth-serial-port
and barcode4nodejs, enabling attackers to achieve
arbitrary code execution, memory corruption, denial of
service attacks or sensitive information leakage. Our em-
pirical evaluation suggests that CHARON is practical and
can be used for security testing of polyglot packages at
scale.

References

[1] S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting Node.js prototype
pollution vulnerabilities via object lookup analysis,” in Joint Meet-
ing on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), 2021.

[2] ——, “Mining Node.js vulnerabilities via object dependence graph
and query,” in USENIX Security Symposium, 2022.

[3] S. Khodayari and G. Pellegrino, “JAW: studying client-side CSRF
with hybrid property graphs and declarative traversals,” in USENIX
Security Symposium, 2021.

[4] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio,
and W. Lee, “Towards measuring supply chain attacks on package
managers for interpreted languages,” in Network and Distributed
System Security Symposium, (NDSS), 2021.

[5] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi,
“Efficient and Flexible Discovery of PHP Application Vulnerabili-
ties,” in IEEE European Symposium on Security and Privacy, 2017.

[6] G. Pellegrino, M. Johns, S. Koch, M. Backes, and C. Rossow,
“Deemon: Detecting CSRF with dynamic analysis and property
graphs,” in ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), 2017.

[7] F. Brown, D. Stefan, and D. R. Engler, “Sys: A static/symbolic
tool for finding good bugs in good (browser) code,” in USENIX
Security Symposium, 2020.

[8] F. Brown, S. Narayan, R. S. Wahby, D. R. Engler, R. Jhala, and
D. Stefan, “Finding and preventing bugs in JavaScript bindings,”
in Symposium on Security and Privacy (S&P), 2017.

[9] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
Discovering Vulnerabilities with Code Property Graphs,” in IEEE
S&P Symposium, 2014.

[10] C.-A. Staicu, S. Rahaman, Á. Kiss, and M. Backes, “Bilingual
problems: Studying the security risks incurred by native extensions
in scripting languages,” in USENIX Security Symposium, 2023.

[11] R. Monat, A. Ouadjaout, and A. Miné, “A multilanguage static
analysis of Python programs with native C extensions,” in Inter-
national Symposium on Static Analysis (SAS), 2021.

[12] Extending python with C or C++. [Online]. Available: https:
//docs.python.org/3/extending/extending.html

[13] PyMethodDef API. [Online]. Available: https://docs.python.org/3/
c-api/structures.html#c.PyMethodDef

[14] Calling Python Functions from C. [Online]. Available: https:
//docs.python.org/3/extendinextending.html#calling-python-
functions-from-c

[15] C++ addons for node.js. [Online]. Available: https://nodejs.org/a
pi/addons.html

[16] JavaScript-accessible methods. [Online]. Available: https://github
.com/nodejs/nan/blob/main/doc/methods.md

[17] C/C++ addons - N-API. [Online]. Available: https://nodejs.org/dis
t/latest-v11.x/docs/apn-api.html#n api napi call function

[18] F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnera-
bility extrapolation using abstract syntax trees,” in Proceedings of
the Annual Computer Security Applications Conference, 2012.

[19] W. Li, J. Ming, X. Luo, and H. Cai, “{PolyCruise}: A {Cross-
Language} dynamic information flow analysis,” in 31st USENIX
Security Symposium, 2022.

[20] H. Zhang, S. Wang, H. Li, T.-H. Chen, and A. E. Hassan, “A study
of c/c++ code weaknesses on stack overflow,” IEEE Transactions
on Software Engineering, pp. 2359–2375, 2022.

[21] MITRE CWE-121: Stack-based Buffer Overflow. [Online].
Available: https://cwe.mitre.org/data/definitions/121.html

[22] MITRE CWE-369: Divide By Zero. [Online]. Available: https:
//cwe.mitre.org/data/definitions/369.html

[23] S. Lipp, S. Banescu, and A. Pretschner, “An empirical study
on the effectiveness of static c code analyzers for vulnerability
detection,” in Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’22), 2022.

[24] M. F. Ringenburg and D. Grossman, “Preventing format-string
attacks via automatic and efficient dynamic checking,” in Proceed-
ings of the 12th ACM Conference on Computer and Communica-
tions Security, 2005, p. 354–363.

[25] Format string vulnerabilities. [Online]. Available: https://book.hac
ktricks.xyz/binary-exploitation/format-strings

[26] F. Kilic, T. Kittel, and C. Eckert, “Blind format string attacks,” in
International Conference on Security and Privacy in Communica-
tion Networks, 2015, pp. 301–314”.

[27] W. Dietz, P. Li, J. Regehr, and V. Adve, “Understanding integer
overflow in c/c++,” in 34th International Conference on Software
Engineering (ICSE), 2012, pp. 760–770.

[28] W. Li, J. Ruan, G. Yi, L. Cheng, X. Luo, and H. Cai, “{PolyFuzz}:
Holistic greybox fuzzing of {Multi-Language} systems,” in 32nd
USENIX Security Symposium, 2023.

[29] S. Ma, M. Jiao, S. Zhang, W. Zhao, and D. W. Wang, “Practical
null pointer dereference detection via value-dependence analysis,”
in 2015 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), 2015.

14

[30] Cwe-416: Use after free. [Online]. Available: https://cwe.mitre.or
g/data/definitions/416.html

[31] H. Wang, X. Xie, Y. Li, C. Wen, Y. Li, Y. Liu, S. Qin, H. Chen,
and Y. Sui, “Typestate-guided fuzzer for discovering use-after-free
vulnerabilities,” in Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering, ser. ICSE ’20, 2020,
p. 999–1010.

[32] MITRE Common Weakness Enumeration. [Online]. Available:
https://cwe.mitre.org/

[33] Code Property Graph: specification, query language, and utilities.
[Online]. Available: https://github.com/ShiftLeftSecurity/codepro
pertygraph

[34] S. Khodayari and G. Pellegrino, “JAW: Studying Client-side CSRF
with Hybrid Property Graphs and Declarative Traversals,” in
USENIX Security Symposium, 2021.

[35] Joern engine. [Online]. Available: https://github.com/joernio/joern
[36] S. Khodayari and G. Pellegrino, “It’s (DOM) Clobbering Time:

Attack Techniques, Prevalence, and Defenses,” in IEEE S&P Sym-
posium, 2023.

[37] Code property graph syntax tree specification for Joern. [Online].
Available: https://cpg.joern.io/

[38] Querying the Joern Database. [Online]. Available: https://joern.re
adthedocs.io/en/latest/querying.html

[39] The Anatomy of a Joern Query. [Online]. Available: https:
//docs.joern.io/traversal-basics/

[40] Gremlin Graph Traversal Language. [Online]. Available: https:
//github.com/tinkerpop/gremlin/wiki

[41] Joern c2cpg library. [Online]. Available: https://github.com/joernio
/joern/tree/c2132ede7c199853c33764de567059511bff6353/joern-
cli/frontends/c2cpg

[42] Joern jssrc2cpg library. [Online]. Available: https://github.com/joe
rnio/joern/tree/c2132ede7c199853c33764de567059511bff6353/jo
ern-cli/frontends/jssrc2cpg

[43] Joern pysrc2cpg library. [Online]. Available: https://github.com/j
oernio/joern/tree/c2132ede7c199853c33764de567059511bff6353/
joern-cli/frontends/pysrc2cpg

[44] ShiftLeft Security. [Online]. Available: https://github.com/ShiftLe
ftSecurity

[45] Joern fixes for the OSS data flow engine. [Online]. Available:
https://github.com/joernio/joern/pull/1376

[46] F. Al Kassar, G. Clerici, L. Compagna, F. Yamaguchi, and
D. Balzarotti, “Testability tarpits: the impact of code patterns on
the security testing of web applications,” in NDSS, 2022.

[47] Writing UTF-8 Compatible Shellcode. [Online]. Available:
http://phrack.org/issues/62/9.html

[48] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in ACM conference
on Computer and communications security, 2007.

[49] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi, “Surgically
returning to randomized lib (c),” in Annual Computer Security
Applications Conference. IEEE, 2009.

[50] B. Stock, G. Pellegrino, F. Li, M. Backes, and C. Rossow, “Didn’t
you hear me?-towards more successful web vulnerability notifica-
tions.” in NDSS, 2018.

[51] Snyk. [Online]. Available: https://snyk.io/
[52] D. Youn, S. Lee, and S. Ryu, “Declarative static analysis for

multilingual programs using codeql,” Softw. Pract. Exp., vol. 53,
no. 7, pp. 1472–1495, 2023.

[53] H. Han, D. Oh, and S. K. Cha, “Codealchemist: Semantics-aware
code generation to find vulnerabilities in JavaScript engines,” in
NDSS, 2019.

[54] S. Groß, S. Koch, L. Bernhard, T. Holz, and M. Johns, “FUZZILLI:
fuzzing for javascript JIT compiler vulnerabilities,” in NDSS. The
Internet Society, 2023.

[55] S. T. Dinh, H. Cho, K. Martin, A. Oest, K. Zeng, A. Kapravelos,
G.-J. Ahn, T. Bao, R. Wang, A. Doupé et al., “Favocado: Fuzzing
the binding code of JavaScript engines using semantically correct
test cases,” in NDSS, 2021.

[56] W. Li, L. Li, and H. Cai, “On the vulnerability proneness of
multilingual code,” in ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software
Engineering, (ESEC/FSE), 2022.

[57] S. Lee, H. Lee, and S. Ryu, “Broadening horizons of multilingual
static analysis: Semantic summary extraction from C code for
JNI program analysis,” in International Conference on Automated
Software Engineering, (ASE), 2020.

[58] G. Tan and J. Croft, “An empirical security study of the native
code in the JDK,” in USENIX Security Symposium, 2008.

[59] G. Tan and G. Morrisett, “Ilea: Inter-language analysis across Java
and C,” in Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2007.

[60] S. Almanee, A. Unal, and M. Payer, “Too quiet in the library: An
empirical study of security updates in Android apps’ native code,”
2021.

[61] A. D. Brucker and M. Herzberg, “On the static analysis of hybrid
mobile apps - A report on the state of Apache Cordova Nation,”
in Engineering Secure Software and Systems (ESSoS), 2016.

[62] J. Bai, W. Wang, Y. Qin, S. Zhang, J. Wang, and Y. Pan,
“Bridgetaint: A bi-directional dynamic taint tracking method for
JavaScript bridges in Android hybrid applications,” IEEE Trans.
Inf. Forensics Secur., 2019.

[63] S. Bae, S. Lee, and S. Ryu, “Towards understanding and reasoning
about Android interoperations,” in International Conference on
Software Engineering (ICSE), 2019.

[64] S. Lee, J. Dolby, and S. Ryu, “Hybridroid: Static analysis frame-
work for Android hybrid applications,” in International Conference
on Automated Software Engineering (ASE), 2016.

[65] M. Hu and Y. Zhang, “The Python/C API: evolution, usage statis-
tics, and bug patterns,” in International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2020.

[66] A. Sorniotti, M. Weissbacher, and A. Kurmus, “Go or no go:
Differential fuzzing of native and C libraries,” in IEEE Security
and Privacy Workshops - Workshop On Offensive Technologies
(WOOT), 2023.

[67] H. V. Nguyen, C. Kästner, and T. N. Nguyen, “Cross-language
program slicing for dynamic web applications,” in Joint Meeting
on Foundations of Software Engineering (ESEC/FSE), 2015.

[68] S. Arzt, T. Kussmaul, and E. Bodden, “Towards cross-platform
cross-language analysis with soot,” in International Workshop on
State Of the Art in Program Analysis, (SOAP@PLDI), 2016.

[69] J. Kreindl, D. Bonetta, L. Stadler, D. Leopoldseder, and
H. Mössenböck, “Multi-language dynamic taint analysis in a poly-
glot virtual machine,” in International Conference on Managed
Programming Languages and Runtimes (MPLR), 2020.

[70] P. Houdaille, D. E. Khelladi, R. Briend, R. Jongeling, and
B. Combemale, “Polyglot ast: Towards enabling polyglot code
analysis,” in International Conference on Engineering of Complex
Computer Systems (ICECCS). IEEE, 2023.

[71] M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Para-
boschi, “Natisand: Native code sandboxing for javascript runtimes,”
in International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2023.

[72] ——, “Cage4deno: A fine-grained sandbox for deno subprocesses,”
in ACM Asia Conference on Computer and Communications Se-
curity (ASIA CCS), 2023.

[73] E. Wyss, A. Wittman, D. Davidson, and L. D. Carli, “Wolf at the
door: Preventing install-time attacks in npm with latch,” in ACM
Asia Conference on Computer and Communications Security (ASIA
CCS), 2022.

[74] W. Wang, X. Lin, J. Wang, W. Gao, D. Gu, W. Lv, and J. Wang,
“HODOR: shrinking attack surface on node.js via system call
limitation,” in ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), 2023.

[75] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm,
S. Lerner, H. Shacham, and D. Stefan, “Retrofitting fine grain
isolation in the Firefox renderer,” in USENIX Security Symposium,
S. Capkun and F. Roesner, Eds., 2020.

[76] N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn, A. DeHon,
and J. M. Smith, “Breakapp: Automated, flexible application com-
partmentalization,” in NDSS, 2018.

[77] N. Vasilakis, C. Staicu, G. Ntousakis, K. Kallas, B. Karel, A. De-
Hon, and M. Pradel, “Preventing dynamic library compromise
on node.js via rwx-based privilege reduction,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS),
2021.

[78] A. AlHamdan and C. Staicu, “Sanddriller: A fully-automated
approach for testing language-based javascript sandboxes,” in
USENIX Security Symposium, 2023.

[79] D. Lehmann, J. Kinder, and M. Pradel, “Everything old is new
again: Binary security of WebAssembly,” in USENIX Security
Symposium, 2020.

[80] A. E. Michael, A. Gollamudi, J. Bosamiya, E. Johnson,
A. Denlinger, C. Disselkoen, C. Watt, B. Parno, M. Patrignani,
M. Vassena, and D. Stefan, “Mswasm: Soundly enforcing memory-
safe execution of unsafe code,” Proc. ACM Program. Lang., vol. 7,
no. POPL, pp. 425–454, 2023.

15

[81] E. Johnson, E. Laufer, Z. Zhao, D. Gohman, S. Narayan, S. Savage,
D. Stefan, and F. Brown, “Wave: a verifiably secure webassembly
sandboxing runtime,” in IEEE Symposium on Security and Privacy
(S&P), 2023.

[82] C. Staicu, M. T. Torp, M. Schäfer, A. Møller, and M. Pradel, “Ex-
tracting taint specifications for javascript libraries,” in International
Conference on Software Engineering (ICSE), 2020.

[83] Y. W. Chow, M. Schäfer, and M. Pradel, “Beware of the unex-
pected: Bimodal taint analysis,” in ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), 2023.

Appendix

1. Additional Evaluation Details

API Node Pyth.
1 NODE SET METHOD()
2 Nan::SetMethod()
3 Nan::SetPrototypeMethod()
4 <exports>.Set(<Napi patterns>)
5 <exports>.Set(<V8 patterns>)
6 PyObject Call()
7 PyObject CallObject()
8 PyObject CallFunction()
9 PyObject CallMethod()
10 PyMethodDef()
11 PyObject<name>()

TABLE 8: Overview of function expose APIs supported by CHARON.

Bin NPM PyPI Total

1 ≤ FP < 10 116 31 147
10 ≤ FP < 100 22 33 55
100 ≤ FP < 250 0 5 5

250 ≤ FP < 1000 0 3 3
1000 ≤ FP < 2500 0 4 4
FP ≥ 2500 0 0 0

TABLE 9: Distribution of packages across false positive bins.

Cross-Language Single-Language

PyPi N S L npm N S L Total PyPi npm Total

TPs 5,208 - - - 605 - - - 5,813 271 651 922
FPs 10,543 10,391 151 1 912 895 1 16 11,455 1,039 1,105 2,144

Total 15,751 1,517 17,268 3,066

TABLE 10: Comparison of CHARON with single-language taint anal-
ysis. Legend (FP introduction point): N=native code, S=script code,
L=language boundary.

2. Artifact Availability

We will publicly release CHARON upon publication
under an open-source license. The source code is accessi-
ble here: https://github.com/VainlyStrain/
charon.

For ethical reasons, we will not publicly release our
dataset of vulnerable NPM and PyPI packages. Since not
all affected parties may patch the vulnerabilities, sharing
these details could pose risks. Our paper does not cur-
rently include any specific information of the vulnerable
packages, except when they have been already patched,
and reports only aggregated results. The anonymity set
is large enough to minimize the risk of someone trying
to find the vulnerable packages using the results in our
paper. Furthermore, CHARON identified a large number

of sensitive data flows (i.e., 5,813), for a significant frac-
tion of which we were unable to create exploits manually.
However, this does not mean that an exploit does not exist,
and determined attackers may still find a way to exploit
these behaviours (Cf. §4.3). Therefore, instead of releasing
the dataset and in the spirit of open science, we will set up
an online form where interested researchers can apply and
describe their need. We will vet the provided information
and grant or deny access to our dataset.

16

