
It’s (DOM) Clobbering Time: Attack Techniques, Prevalence, and Defenses

Soheil Khodayari, Giancarlo Pellegrino
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
{soheil.khodayari, pellegrino}@cispa.de

Abstract—DOM Clobbering is a type of code-less injection
attack where attackers insert a piece of non-script, seemingly
benign HTML markup into a webpage and transform it
to executable code by exploiting the unforeseen interactions
between JavaScript code and the runtime environment. The
attack techniques, browser behaviours, and vulnerable code
patterns that enable DOM Clobbering has not been studied
yet, and in this paper, we undertake one of the first evaluations
of the state of DOM Clobbering on the Web platform. Starting
with a comprehensive survey of existing literature and dynamic
analysis of 19 different mobile and desktop browsers, we sys-
tematize DOM Clobbering attacks, uncovering 31.4K distinct
markups that use five different techniques to unexpectedly
overwrite JavaScript variables in at least one browser. Then, we
use our systematization to identify and characterize program
instructions that can be overwritten by DOM Clobbering, and
use it to present TheThing, an automated system that detects
clobberable data flows to security-sensitive instructions. We
instantiate TheThing on the top of the Tranco top 5K sites,
quantifying the prevalence and impact of DOM Clobbering
in the wild. Our evaluation uncovers that DOM Clobbering
vulnerabilities are ubiquitous, with a total of 9,467 vulnerable
data flows across 491 affected sites, making it possible to mount
arbitrary code execution, open redirections, or client-side re-
quest forgery attacks also against popular websites such as
Fandom, Trello, Vimeo, TripAdvisor, WikiBooks and GitHub,
that were not exploitable through the traditional attack vectors.
Finally, in this paper, we also evaluate the robustness of
the existing countermeasures, such as HTML sanitizers and
Content Security Policy, against DOM Clobbering.

Index Terms—DOM Clobbering, Attack Techniques, Preva-
lence, Defenses

1. Introduction
Arbitrary client-side JavaScript execution has been one of

the major threats against web applications since the early
days, traditionally achieved by injecting JavaScript code into
vulnerable pages, e.g., Cross-Site Scripting (XSS) attacks [1–
11]. However, over the past 20 years, the growth of Web
technology has introduced unforeseen interactions between
JavaScript programs and the execution environment that
can result in execution of arbitrary code without injecting
JavaScript but only by injecting seemingly harmless HTML

markups. The research community has only recently started
studying the security of these interactions, mainly focusing
on small code fragments called script gadgets [12] that
react to injected HTML markups and transform it into code.
Unfortunately, script gadgets are only the tip of the iceberg,
and other complex interactions exist that attackers can abuse
to hijack the program execution, which, to date, are largely
unexplored.

DOM Clobbering is a vulnerability that originates from
a naming collision between JavaScript variables and named
HTML markups, where browsers replace pre-existing content
of an undefined variable with an HTML element when the
variable name and the element’s name (or id) attribute
match. Developers unaware of such behavior may use the
content of undefined variables for sensitive operations, such
as URLs for fetching remote content, and attackers can
exploit it by injecting markups with colliding names. DOM
Clobbering vulnerabilities have been known for over a
decade, with the first instance identified in 2010 [13] where
an iframe named self allowed attackers to overwrite
the top window location of webpages containing frame-
busting code, i.e., assignments such as top.location
= self.location. Since then, security researchers have
identified new, more subtle attack variants, combining pairs of
HTML tags (e.g., [14, 15]) or browser-specific markups and
attributes (e.g., [16–19]), and clobbering not only variables,
but also deep object properties (e.g., [20–22]), nested window
proxies (e.g., [21, 23]) and loops (e.g., [21]). When looking
at the possible combinations of tags, attributes, code features,
and runtime behaviors, prior works have merely scratched
the attack surface, and, to date, we still miss a systematic
and comprehensive exploration of this threat.

Recently, DOM Clobbering vulnerabilities in Gmail [22]
and Google Analytics [24, 25] revamped new discussions
about defenses, such as proposing to switch off named
property accesses for DOM elements at the browser level (see,
e.g., [25–27]), which has been dismissed since, according
to Google Chrome telemetry data, about 10.5% of the
pages in 2021 use named property accesses to implement
functionalities that could otherwise break [28]. To date, the
burden of protecting from DOM Clobbering attacks is solely
on developers’ hands, who can use existing countermeasures
such as HTML sanitizers tailored to protect against DOM
Clobbering, e.g., DOMPurify [7], or mitigate the risk of
code execution via Content Security Policy (CSP) [29–31].

1

Unfortunately, DOMPurify protects only from specific DOM
Clobbering cases, whereas CSP cannot prevent the execution
of already-present code that reacts to markup injections,
suggesting that existing countermeasures may be incomplete
or even insufficient. As a last resort, developers can develop
their own defenses, requiring a deep understanding of the
main threat and its variants, which, unfortunately, may not
be the case. For example, as witnessed by recent DOM
Clobbering vulnerabilities discovered in HTML sanitizers,
e.g., DOMPurify [17] and HTML Janitor [20], developers
may still be largely unaware of the risk posed by DOM
Clobbering vulnerabilities.

In this paper, we take a step back and take a deep look
at DOM clobbering, with, to the best of our knowledge, the
first systematic and comprehensive study on this neglected
vulnerability class, covering three main aspects: a systematic
exploration of the attack surface, a measurement of affected
and vulnerable websites, and a review and evaluation of
defenses. Starting from a comprehensive survey of prior
DOM Clobbering vulnerabilities, we systematically generate
candidate DOM Clobbering markups, and automatically test
desktop and mobile browsers against them, covering all
known HTML tags and attributes–including custom ones–and
markup relationships. Then, we propose TheThing, a DOM
Clobbering detection tool that combines hybrid program
analysis, i.e., [32], for the discovery of potentially-vulnerable
data flows, with forced execution, i.e., [33], for the automated
vulnerability verification, leveraging the generated DOM
Clobbering markups. We instantiate TheThing against the
Tranco top 5K websites to quantify the prevalence and
impact of DOM Clobbering vulnerabilities, processing, in
total, over 24.6B lines of JavaScript code across 18.3M
scripts and 205.6K webpages. Finally, we identify, review,
and evaluate defenses, covering existing countermeasures and
secure code patterns. In particular, we first precisely measure
the cost-benefit trade-off of browser-level countermeasures
and thoroughly test HTML sanitizers. Then, we review the
vulnerable code discovered by TheThing, identify common
developer mistakes, and distill a list of secure coding patterns.

Our results show that the attack surface of DOM Clob-
bering vulnerabilities is large, with only 481 out of 31,432
generated DOM Clobbering markups are currently known,
and the remainings are either previously-unknown instances
(148) or variants of known cases (30,803). When grouping
markups by browser behaviors, we observe ten different
behavioral groups, showing that while most of the attacks
are shared across browsers, many others work with specific
browsers only. In addition, our experiments discovered 114
new native browser APIs that these markups clobber in
at least one browser, including security-sensitive APIs like
cache storage [34] and trusted types [35]. Second, DOM
Clobbering vulnerabilities are quite widespread, affecting
9.8% of the top 5K websites, including popular sites like
GitHub, Fandom, Trello, Vimeo, TripAdvisor, WikiBooks
and AliExpress, leading to severe consequences such as
arbitrary code execution, client-side CSRF [32], and open
redirections [36, 37]. Third, when looking at the browser-
level defenses, disabling named property accesses can cause

Listing 1: Example of DOM Clobbering vulnerability where named proper-
ties overshadow JavaScript variables.

1 var s = document.createElement('script');
2 let config = window.globalConfig || {href: 'script.js'};
3 s.src = config.href;
4 document.body.appendChild(s);

Listing 2: Example of DOM Clobbering vulnerability where named proper-
ties overshadow native DOM APIs.

1 var s = document.createElement('script');
2 let b = document.documentElement.getAttribute('baseURI');
3 s.src = b + '/script.js';
4 document.body.appendChild(s);

more breakage, i.e., 2,561 websites, than benefits, i.e., 491
vulnerable websites, with a cost-benefit ratio of 5.2:1 web-
sites. In the absence of a browser-level fix, developers need to
be particularly careful when choosing a countermeasure, as
they balance protection with usability. For example, 55% of
the most popular HTML sanitizers across the five most used
web languages are vulnerable to at least one of the 31.4K
clobbering markups by default. The remaining 45% sanitizers
remove named properties, i.e., id and name attributes, which
may interfere with the DOM manipulation operations. Also,
our results show that CSP is insufficient because 85% of the
discovered vulnerabilities can cause code execution without
manipulating the src attribute. Finally, our results show that
developers can fix vulnerabilities at the code level, and we
identify eight distinct vulnerable code patterns to avoid and
propose four secure patterns to fix them.
Contributions. To summarize, this paper makes the follow-
ing contributions:
• We conduct the first comprehensive and systematic

study of DOM Clobbering, covering vulnerability, attack
techniques, detection, prevalence, impact, and defenses.

• We propose a systematic technique to identify DOM
Clobbering markups and test browsers automatically,
identifying 148 previously-unknown ones, 30,803 new
variants, and 114 new browser APIs that can be clob-
bered in at least one browser.

• We present TheThing, an automated detection tool for
DOM Clobbering that uncovered 9,467 DOM Clob-
bering vulnerabilities, affecting 9.8% of the Tranco
top 5K sites, of which 44 that we manually confirmed
to be exploitable, including popular sites like GitHub,
Fandom, Vimeo, Trello, TripAdvisor, and AliExpress.

• We evaluate the robustness of 29 client-side and server-
side HTML sanitizers and CSP, showing that 55%
of sanitizers are vulnerable and 85% of the DOM
Clobbering vulnerabilities cannot be mitigated by CSP.

• We review existing countermeasures, analyze common
mistakes of the 491 vulnerable sites, and distill a list
of recommendations and secure coding patterns.

2. Background
Before presenting our study, we first dissect and introduce

the DOM Clobbering vulnerability in §2.1, and then, we
present the threat model of this work in §2.2.

2

2.1. DOM Clobbering Vulnerability
DOM Clobbering vulnerabilities originate from a naming

collision between JavaScript variables and named HTML
markups, i.e., markups with an id or name attribute [15,
38, 39]. When an undefined variable [40, 41] and an HTML
markup have the same name, the browser replaces the pre-
existing content of the variable with the DOM object mirror-
ing the markup type. Listing 1 shows a snippet of vulnerable
code, which loads a script whose URL is stored in a global
configuration object, i.e., window.globalConfig. In
more details, the code first creates a script tag (line 1), and
then, it retrieves the global configuration object and stores
it in a local variable config (line 2). If the configuration
object does not exist, it uses a minimal default configuration,
i.e., {href: ‘script.js’} (line 2). Then, the program
sets the src attribute of the newly created script tag to
the href property of the configuration object (line 3) and
appends the new script to the DOM tree (line 4).

The vulnerability originates in the assignment in
line 2 because attackers can control the value of
window.globalConfig, and ultimately, pick the
script src value of their choosing by injecting an
HTML tag with id="globalConfig", e.g., .
When parsing such a markup code, the browser maps
the anchor tag element to the window.globalConfig
property as mandated by the named property access
rule of the HTML specifications (see [42–44]). The
escalation to arbitrary code execution happens in line 3,
when the code reads the href property of the object
window.globalConfig, which no longer contains the
object with the global configuration but it contains the
attacker-controlled anchor tag whose href property value
is malicious.js.

Attackers can abuse named property accesses in other
ways, where instead of overwriting variables by HTML nodes,
they can overshadow browser APIs. Listing 2 illustrates an ex-
ample of such an attack. Similarly to Listing 1, this code also
dynamically creates and loads a script. Instead of fetching
the URL from a global configuration object, the code intends
to use the baseURI attribute of the main HTML tag via the
document.documentElement API (line 2). An attacker
can manipulate the content of src in line 3 by shadow-
ing the native property document.documentElement
using an attacker-injected node in the DOM tree [45],
e.g., a form element with name="documentElement"
and the custom property baseURI="malicious.js".
When parsing the form tag, the browser maps the prop-
erty document.documentElement to the JavaScript
object representing the form tag (an instance of the
HTMLFormElement class) which has a function called
getAttribute which returns the value of the attribute
baseURI, i.e., the string malicious.js.

2.2. Threat Model
In a DOM Clobbering attack, the attacker needs to insert an

ad-hoc HTML payload into a target, vulnerable webpage. A

web attacker [46, 47] can achieve that, e.g., adding a preview
of a post to the client-side webpage by leveraging the URL
parameters. Another example is the case where the attacker
can implant a persistent DOM Clobbering payload in the
target webpage, which can lie dormant, and exploited later
on to attack a victim, e.g., adding persistent comments in the
UI through Gmail’s dynamic email feature [48] which allows
including HTML content [22], or user-generated Markdown
descriptions in code repositories that are turned into HTML
content [49, 50]. Finally, a more powerful web attacker
(e.g., [5, 12]) who is aware of a markup injection vulnerability
can manipulate the DOM tree.

3. Problem Statement
This paper aims to answer the following questions:

(RQ1) DOM Clobbering Attack Techniques. When look-
ing at the evolution of DOM Clobbering attack markups, we
observe a consistent complexity growth, starting from a single
HTML element [13] that can overwrite a variable, evolving
with pairs of HTML tags [14, 15] that clobber properties of
objects (2013-15), and then advancing into a wide variety
of browser-specific combinations of different HTML tags
and attributes that can not only overwrite variables, but
also native DOM objects (2015-18) [16–19], nested object
properties, and loop elements (2018-22) [21–23]. Despite the
growth of markups’ complexity, the exploration of the attack
surface has not been conducted systematically, and to date,
many of the possible combinations of tags, attributes, markup
relationships and possible JavaScript object manipulations
are not considered. As a first research question, we intend to
fill this gap and exhaustively explore such an attack surface
by generating clobbering markups and testing modern mobile
and desktop browsers automatically.
(RQ2) Detection, Prevalence and Impact. While the ex-
istence of DOM Clobbering is known for more than a
decade [13, 14], we still do not have a measurement about
the prevalence, impact, and code patterns of this vulnerability.
In this paper, we intend to quantify the prevalence of DOM
Clobbering in the wild, identify vulnerable behaviours, and
examine their impact to shed some light on possible causes
and factors hampering web applications’ security.
(RQ3) Defenses and Effectiveness. As a final question, we
look at the defenses, their effectiveness, and cost-benefit,
leveraging the data generated and collected from the previ-
ous answers, i.e., DOM Clobbering markups, vulnerability
prevalence, and developer mistakes. In particular, we intend
to re-evaluate the cost-benefit trade-off resulting from dis-
abling named property accesses in browsers and thoroughly
assess existing solutions such as HTML sanitization [7],
Content-Security Policy (CSP) [22, 29], and freezing object
properties [51] against DOM Clobbering. Finally, we intend
to review developers’ mistakes and identify vulnerable and
secure coding patterns that can fix those issues.

4. Attack Techniques
The first part of this paper addresses RQ1, investigating

the different ways DOM Clobbering markups can manipulate

3

JavaScript variables, object properties, and native APIs.
Before presenting our findings (§4.2), we describe the
methodology we followed to answer this RQ (§4.1).

4.1. Methodology
Our methodology comprises two main steps. First, we

review existing works on DOM Clobbering attacks, looking
for the various techniques to generate markups and at the
browser specifications causing the overrides. Then, we apply
the information gathered to generate markups exhaustively
and thoroughly test browsers.

4.1.1. Systematization of Known Instances
As the first step, we systematically reviewed the existing

literature on DOM Clobbering attack markups, i.e., the aca-
demic literature [7, 12, 13, 26], HackerOne vulnerability re-
ports [52], the CVE database [53], Bugzilla bug reports [16],
and non-academic resources (see, i.e., [14, 15, 17, 21–
23, 39, 54, 55]). Then, for each discovered DOM Clobbering
instance, we extracted the HTML tags, attributes, the clob-
bered target (e.g., variable or window/document property),
the object type of the clobbered target (e.g., HTMLElement
or WindowProxy), and tags relation (i.e., child, srcdoc,
or sibling). Then, we looked for the corresponding browser
specification rules that explain the reason why the clobbering
instance works. When the rule defines other variants of
the clobbering instance, we add them to the list of the
instances. Accordingly, we reviewed the HTML and DOM
specifications [56, 57], and GitHub issues in the specifica-
tions’ repositories, i.e., W3C permissions policy [27], WICG
document policy [19, 25], and WHATWG HTML and DOM
standard repositories [18, 58]. Finally, we group instances
together based on their similarity, i.e., tags, attributes, target,
and the type of the value it refers to. Table 1 shows the
result of our systematization.

4.1.2. Markup Generation and Browser Testing
Starting from our systematization, we derived a list of

rules for generating DOM Clobbering markups, covering
all HTML tags, attributes, tags’ relations, and attack targets
(i.e., a variable, an object property, or a native browser API).
First, we generated candidate HTML markups for a target
‘x’ using all the 142 valid HTML tags, including a custom
tag (e.g., mytag), and all the 244 valid HTML attributes,
including a custom attribute. For each tag, we set the value
of each attribute to ‘x’ and add the JavaScript code that
checks whether the markup clobbers the target ‘x’. Then,
we generated markups for object properties ‘x.y’ and ‘x.x’
combining all pairs of the 142 HTML tags considering three
relations: sibling tags, parent-child tags, and the srcdoc
attribute value. The experiments with a single tag showed
that only name and id attributes create named properties.
Accordingly, to reduce the number of test cases to a testable
size, the generation of markups for object properties did not
consider combinations of all HTML attributes, but only those
of the name and id, e.g., id=x, or id=x, name=y.

After generating all markups, we put each of them in a
test webpage, along with a JavaScript code that verifies if

the target is clobbered. Then, we instantiate each browser
and visit the test pages automatically. For web browsers, we
used BrowserStack [59] to programmatically control browser
versions, names, and their execution life-cycle in a fully
automatic fashion. We evaluated (the latest versions of) all
mobile and desktop browsers available in BrowserStack (i.e.,
16 browsers), and additionally tested the Tor Browser for
the sake of completeness. Finally, for Safari, we considered
three different versions that correspond to the three recent
macOS operating systems as Safari cannot be upgraded
standalone [60]. In total, we evaluated 19 browsers.

Overall, our generation algorithm produced 3,906,136
candidate test markups, of which 34,648 are for targets
‘x’, i.e., variables or native APIs, and the rest are for object
properties ‘x.y’ and ‘x.x’. When testing variables, we replace
the target ‘x’ with the variable name generating in total
34,648 test cases for variables. When testing native DOM
APIs, we replace the target ‘x’ with the API function or
property name (e.g., the cookie property of document),
obtaining 34,648 test cases per API function. As of October
2021, the total number of DOM API objects is 581 [61],
of which 347 are window APIs (i.e., 291 properties and
56 methods) [62], and 234 APIs are for the document
object (i.e., 178 properties and 56 methods) [63]. In total,
we generated 20,130,488 test cases for native APIs.

4.2. Results
This section presents the results of our literature review

and browser testing.

4.2.1. Systematization of Known Instances

Table 1 summarizes the DOM Clobbering markups. Our
review identified 481 DOM Clobbering instances that we
grouped into 13 classes based on their structural similarity.
Each instance shows how a specific HTML markup (e.g.,
) can clobber a specific target, i.e., variable
(e.g., x) or object property (e.g., window.x), and replaced
it with a JavaScript object (e.g., x is shadowed by an
HTMLAnchorElement). For each class, the table shows
the clobbered target, the HTML code that can overwrite it,
and the object type stored in the target. Also, the review
of the HTML and DOM specifications resulted in the
identification of five rules that instruct the browser to store
the reference type in the target, which is mapped to each
known DOM Clobbering instance. The rules are Named
Access on Window ([56] §7.3.3), DOM Tree Accessors
([56] §3.1.5), Form Element ([56] §4.10.3), Iframe srcdoc
attribute ([56] §4.8.5), and HTMLCollection ([57] §4.2.10.2),
which we labeled as R1 to R5, respectively. The rest of this
section details each group of clobbering markups and the
rules abused by them.
Named Access Window. These group of markups leverage
a single HTML element whose id or name is set to a
target variable ‘x’, clobbering window.x due to browsers’
compliance with the Named Access on the Window Object
rule (R1) [42]. We reviewed this rule in §2.1. Note that we
use window.x and ‘x’ interchangeably because all global

4

.
Name Rule(s) Target Reference Type Tag 1 Tag 2 Attribute 1 Attribute 2 Relation Total Reference

Named Access Window R1 win.x, x WindowProxy iframe - name=x - - 1 [27, 42, 55]
win.x, x HTMLElement TS1, TS2 - name=x - - 5 [15, 17, 27, 42]
win.x, x HTMLElement any - id=x - - 141 [14, 21, 22, 27, 42]

DOM Tree Accessors R2 doc.x WindowProxy iframe - name=x - - 1 [21, 43, 54]
doc.x HTMLElement TS1, TS2 - name=x - - 5 [15, 43]
doc.x HTMLElement object - id=x - - 1 [43]
doc.x HTMLElement img, image - id=x, name=any - - 2 [15, 17, 43]

Form Parent-Child R3, R1, R2 win.x.y, doc.x.y HTMLElement form TS2, TS3 id=x ‖ name=x id=y ‖ name=y child 36 [15, 17, 18, 20, 21]
Nested Window Proxy R4, R1, R2 win.x.y, doc.x.y WindowProxy iframe iframe name=x name=y srcdoc attr. 1 [21, 23, 54]
HTMLCollection R5, R1, R2 win.x.x HTMLCollection any any id=x id=x child, sibling 141 [14, 22, 57]

doc.x.x HTMLCollection TS2 TS2 id=x id=x child, sibling 3 [14, 43, 57]
win.x.y HTMLCollection any any id=x, name=y id=x child, sibling 141 [14, 21, 22, 39, 54, 57]
doc.x.y HTMLCollection TS2 TS2 id=x, name=y id=x child, sibling 3 [14, 43, 57]

Legend: R1= Named Access on Window Rule ([56] §7.3.3); R2= DOM Tree Accessors Rule ([56] §3.1.5); R3= Form Element Rule ([56] §4.10.3); R4= Iframe srcdoc Rule ([56] §4.8.5);
R5= HTMLCollection Rule ([57] §4.2.10.2); win=window; doc=document; TS1=form, embed; TS2= object, img; image; TS3=button, fieldset, input, output, select, textarea.

TABLE 1: Overview of known DOM Clobbering markups grouped by their corresponding rules in the HTML [56] and DOM [57] specifications.

variables belong to the global window object by default.
DOM Tree Accessors. The markups of this group can
shadow document properties because browsers comply
with the DOM Tree Accessors rule (R2) [43], which instructs
browsers how to retrieve properties of the document object
(e.g., DOM elements). Similarly to the previous group, these
markups use a single named HTML element (e.g., object,
or embed) to clobber a property ‘x’ of the document.
Form Parent-Child Relationship. These markups clobber
properties ‘X.y’ where ‘X’ can be any of ‘x’, window.x,
and document.x. First, they exploit either the rules R1 or
R2 to clobber the base object ‘X’. Then, they use the Form
Element rule (R3) to clobber property ‘y’ of object ‘X’,
i.e., the form elements’ parent-child relationships where the
browser creates a property of the second element for the
first element’s accessor variable [21]. DOM Clobbering code
that rely on this technique comprise a form tag and a child
(e.g., an input) named ‘x’ and ‘y’, respectively.
Nested Window Proxies. These markups use the Iframe
srcdoc rule (R4) to create nested window proxies that
are named with ‘x’ and ‘y’, respectively. Similarly to the
previous group of markups, it uses the rule R1 or R2 to
clobber the base object. Then, the stacked iframes enable
attackers to exploit frame navigation features to clobber
object properties like ‘x.y’ [21, 23].
HTMLCollection. The last gour groups of markups rely
on a different rule known as HTMLCollection (R5). Specif-
ically, when two or more elements have the same id in
the DOM tree, browsers create an array-like object called
HTMLCollection [14, 64], which contains all elements
with the same id. Elements inside HTMLCollections can be
accessed by (i) their index in the collection and (ii) their
id and name, enabling attackers to abuse R5 to clobber
arrays [21] and loop elements (e.g., ‘x’ and ‘x[i]’) as well
as object properties like ‘x.x’ and ‘x.y’ [22]. Similarly to
the previous techniques, rules R1-2 can be combined with
R5 to clobber nested object properties like window.x.y.

4.2.2. Clobbering Variables and Object Properties
Our browser testing experiments uncovered 31,432 distinct

DOM Clobbering markups that work in at least one browser,
as summarized in Table 2, from which 145 clobber a variable
‘x’, and the remaining 31,287 clobber ‘x.y’ and ‘x.x’.

Post-processing of Results. As the manual review of 31K
individual instances is infeasible, we group instances by
similar features. We start with preliminary groups based
on the set of browsers they work in and the target they
clobber. Then, we look at the structural features, i.e., tag1,
tag2, attribute1, attribute2, and relationship, and we merge
two groups when all the structural features but one are the
same. Accordingly, we reduced the 31K instances to 74
classes, as shown in Table 2, and map each class to our
systematization of known instances. In summary, out of the
74 classes, 10 classes rely on the Window Named Access,
four classes on DOM Accessors, 13 classes on the Parent-
Child Relationship, four classes on Nested Window Proxies,
and finally 43 classes leverage HTMLCollections.
Findings. By comparing the 74 DOM Clobbering classes in
Table 2 with the 13 previously identified classes in Table 1,
we discovered that the 31,432 DOM Clobbering markups
include 148 new instances, 481 previously known ones, and
30,803 variants of the known ones, which rely on one of the
five DOM Clobbering techniques of §4.2.1.

The variants derive from markups that are already known
for DOM Clobbering according to Table 1, but now have
one or more additional attributes, or are permuted in part
with a different HTML tag. For example, HTMLCollections
clobbering window properties may be formed not only for
two similar HTML tags as in Table 1 (e.g., two a tags with
id=x), but also for certain combinations of dissimilar tags
(e.g., svg and a), which accounts for a large number of
the clobbering instances. Other variants are cases where
additional id and name attributes are added to the existing
clobbering markups. For example, when looking at form
elements and their childern in Table 1, we observe that each
tag of the markup has only one id or name. However, as
demonstrated by the results in Table 2, these attributes may
exist simultaneously on HTML tags and with similar or
dissimilar values, resulting in additional clobbering variants.

In comparison, the new clobbering instances rely on new
(pairs of) HTML tags and attributes that were previously not
known to be applicable for DOM Clobbering. We observed
that 28 out of the 74 identified classes contain at least one
new instance, with a total of 148 new instances. From these,
22 classes contain only new instances (i.e., 142 instances).
In the remaining of this section, we briefly describe the new

5

.
Chrome Firefox Opera Edge Safari TB SI UC

HTML Markup 95
.0

.4
63

8

96
.0

92
.0

.4
51

5

94
.1

.2

95
.0

39
.0

65
.2

.3
38

1

82
.0

.4
22

7

3.
2.

3

95
.0

.1
02

0

96
.0

.1
05

4

95
.0

.1
02

0

15
.1

14
.1

13
.1

14
.7

.1

11
.0

.1

15
.0

.6

13
.3

.8

Clobbered Tag 1 Tag 2 Attribute 1 Attribute 2 Relation Total New � ¿ � ¿ � ¿ � ¿ ¿ ¿ ¿ ¿ � �

Named Access Window
win.x TS2 - id=x - - 106

E win.x customtag,iframe,TS5 - id=x - - 8 1
win.x TS6,bdi,bdo,big - id=x - - 6
win.x TS4,embed,form - n=x - - 5
win.x video,wbr,xmp - id=x - - 3
win.x aside,audio,b - id=x - - 3

E win.x applet - n=x - - 1 1
win.x iframe - n=x - - 1
win.x base - id=x - - 1
win.x article - id=x - - 1

DOM Tree Accessors
doc.x TS4,embed,form - n=x - - 5

E doc.x applet - id=x ‖ n=x - 2 2
E doc.x iframe - id=x ‖ n=x - - 2 1

doc.x object - id=x - - 1

Form Parent-Child
win.x.y form TS3,TS4 − fieldset id=x ‖ n=x (& id=y) id=y ‖ n=y child 64
doc.x.y form TS3,TS4 n=x (& id=y) id=y (& n=x ‖ n=y) child 36
win.x.y form TS3,TS4 id=x (& n=y) id=x & n=y child 18
win.x.y form TS3,TS4,embed n=x id=y & n=x child 10
doc.x.y form TS3,TS4,embed, form n=x id=y & n=x child 10
win.x.x form TS3,TS4 id=x id=x & n=y child 9
win.x.y form button id=x ‖ n=x (& id=y) id=y ‖ n=y child 8
win.x.x form TS3 n=x id=y & n=x child 6
doc.x.x form TS3,TS4 n=x id=y & n=x child 6

E doc.x.x, win.x.x form TS4,embed n=x id=y & n=x child 4 1
E doc.x.y form iframe n=x id=y & n=x child 1 1
E win.x.y, doc.x.y form TS4,embed id=y & n=x id=y & n=x child 4 1
E win.x.y form applet n=x id=y & n=x child 1 1

Nested Window Proxy
doc.x.x iframe iframe n=x id=y & n=x srcdoc 1

E doc.x.y iframe iframe n=x id=y ‖ n=y srcdoc 2 1
win.x.x iframe iframe n=x id=y & n=x srcdoc 1

E win.x.y iframe iframe n=x id=y ‖ n=y srcdoc 2 1

HTMLCollection
win.x.y TS1,svg,customtag TS1,plaintext id=x id=x & n=y sibling 787
win.x.y TS1,customtag − TS7,iframe TS1,plaintext id=x id=x & n=y child 774
win.x.y abbr,dl,dt TS13 id=x id=x & n=y child, sibling 274
win.x.y abbr,dl,image,img TS8,TS12,TS20 id=x id=x & n=y child, sibling 392
win.x.y TS18 TS13,TS14 id=x id=x & n=y child, sibling 7,480
win.x.y address,dir,dt TS15 id=x id=x & n=y child, sibling 338
doc.x.y applet TS4,applet id=x id=x & n=y child 4

E doc.x.y TS4,applet,embed,form,iframe TS4,applet,embed,form,iframe n=x id=y & n=x sibling 13 13
E doc.x.y applet,embed,form,image,img TS4,applet,embed,form,iframe n=x id=y & n=x child 11 11

doc.x.y applet,object TS4,applet id=x id=x & n=y sibling 5
win.x.y dir,div,dt,element TS16 id=x id=x & n=y child, sibling 252
win.x.y div TS17 id=x id=x & n=y child, sibling 66
win.x.y div,dl TS12 id=x id=x & n=y child, sibling 186
win.x.y element,em,embed,fieldset TS1,plaintext-iframe id=x id=x & n=y child, sibling 876

E win.x.y embed TS4,embed,form n=x id=y & n=x child, sibling 10 10
E doc.x.y TS4,embed,form,iframe TS4,embed,form,iframe n=x id=y & n=x sibling 11 11
E doc.x.y TS4,embed,form TS4,embed,form n=x id=y & n=x sibling 25 25
E doc.x.y embed,image,img iframe n=x id=y & n=x child 3 3
E doc.x.y embed,image,img T3,TS4,embed,form n=x id=y & n=x child 15 15

win.x.y TS9,iframe TS1,plaintext-iframe id=x id=x & n=y sibling 1,436
win.x.y TS9 TS1,plaintext-iframe id=x id=x & n=y child 1,301

E win.x.y form,image TS4,embed,form n=x id=y & n=x sibling 7 7
E win.x.y TS4,form applet n=x id=y & n=x sibling 4 4
E win.x.y image embed,form n=x id=y & n=x child 2 2
E win.x.y image,img TS4,embed,form n=x id=y & n=x child, sibling 16 16
E win.x.y TS4 applet n=x id=y & n=x child 3 3

win.x.y ins content,data id=x id=x & n=y child, sibling 4
win.x.y TS7, TS8 TS1,plaintext − iframe id=x id=x & n=y sibling 8,848
win.x.y TS8 TS1,TS11,plaintext − iframe id=x id=x & n=y child 7,526

E doc.x.x, win.x.x object TS4,embed,form n=x id=y & n=x child 5 5
doc.x.y object TS4 id=x id=x & n=y sibling 3

E doc.x.y object form,image,img n=x id=y & n=x child 3 3
E doc.x.y object iframe n=x id=y & n=x child 1 1

doc.x.y object image,img id=x id=x & n=y child 2
E doc.x.y object embed,object n=x id=y & n=x child 2 2
E win.x.y object TS4,embed,form n=x id=y & n=x child, sibling 1 1
E win.x.y, doc.x.y object TS4,embed,form id=y & n=x id=y & n=x child 5 5

win.x.y svg iframe id=x & n=y id=x & n=y sibling 1
win.x.y svg TS1,plaintext id=x & n=y id=x & n=y sibling 125
win.x.y svg,table TS1,plaintext − TS19 id=x & n=y id=x & n=y child 157
win.x.x table iframe id=x id=x & n=y child 1
win.x.x table TS1,plaintext,svg − TS10 id=x id=x & n=y child 119 0
win.x.y table iframe id=x & n=y id=x & n=y child 1

Total 31,432 148 59 59 46 35 35 46 59 59 44 59 59 43 38 45 52 37 35 59 59

Legend: win=window; doc=document; TS i= Tag Set in Table 7 of §A.2; n= name; (&p)= optional property p; − = minus operator; TB= Tor Browser; SI= Samsung Internet; UC= UC Browser; = clobbered; = clobbering fails;

TABLE 2: Overview of DOM Clobbering markups. Rows marked with E are classes that contain new DOM Clobbering instances. For all rows, clobbering
window.x also implies clobbering the variable x. Browsers with similar behaviours are grouped with the same color. The table highlights a total of 10
distinct groups of browser behaviours with respect to DOM Clobbering.

6

instances within each DOM Clobbering technique.
Named Access Window and DOM Tree Accessors. We

discovered that any custom HTML tag (e.g., customtag)
can be used to clobber a target variable x and window.x in all
web browsers. Also, iframe tags with id=x can clobber
document.x and named applet elements can clobber both
window.x and document.x. In total, we found five new
instances across four out of the 14 classes that rely on
the Window Named Access and DOM Accessors techniques.

Form Parent-Child. We discovered that browsers like
Firefox and Safari create accessor properties on JavaScript
objects due to element’s ancestral relationship in the DOM
tree for previously unknown pairs of tags and attributes, such
as a parent form tag with a embed, iframe, or applet
child with both a name and id attribute. Overall, among the
13 classes that rely on elements’ parent-child relationships,
we found four new markups in four different classes.

Nested Window Proxy. We identified two new clob-
bering markups in two out of the four classes which use
the Nested Window Proxies technique. In particular, we
discovered that using the id attribute in the nested frames
creates a named property on the base frame, referring to
a WindowProxy, whereas id on the base frame does
not create a WindowProxy accessible through the global
window or document.

HTMLCollection. We found 137 new clobbering in-
stances (across 18 classes) that lead to the construction
of HTMLCollections in a different way. Specifically, we
discovered that some browsers (e.g., Chrome and Firefox)
create an HTMLCollection not only when two elements
share the same id, but also when they have the same name
value. However, we observed that this happens only for
certain (combinations of) HTML tags, e.g., two object
tags and two form tags with the same name can form an
HTMLCollection, but not two div tags.
Analysis of Browsers’ Behaviours. Our experiments re-
vealed that browsers exhibit divergent behaviours when link-
ing named HTML elements to JavaScript variables (Table 2).
For example, we observed that for a significant fraction of
the clobbering markups (i.e., 31,243 out of 31,432), there
is at least one browser that disagrees with others, rendering
the task of defending against DOM Clobbering increasingly
more challenging. In summary, we identified 10 distinct
groups of browser behaviours with respect to different DOM
Clobbering markups, which are highlighted in Table 2 in col-
ors, showing that while most of the attacks are shared across
browsers, many others only work with specific browsers.
The table shows that all Safari and iOS-based browsers
have their own distinct behaviours, whereas browsers like
Chrome, Opera, and Edge on Desktop and Android exhibit
the same behaviour. Note that, in general, similarities in
behaviours are expected because some browsers rely on
the same underlying engine. For example, Chrome, Edge
and Opera on Desktop are all Blink-based browsers [65],
whereas iOS browsers are required to use the WebKit engine
of Apple [66]. Finally, we observed that the least and highest

amount of DOM Clobbering risk is associated with using
browsers like Firefox Desktop/Android and Chromium-based
browsers on Desktop/Android in which 35 and 59 classes
of DOM Clobbering markups work, respectively.

4.2.3. Clobbering Native APIs
Overall, we identified a total of 347 DOM APIs (Table 12)

that can be clobbered in at least one browser using one of
the markups of §4.2.2, including 233 document and 114
window APIs. We observed that all document methods
and properties except the location property (i.e., 233
APIs) can be clobbered in all browsers unanimously, as
expected by the named property visibility algorithm [45] of
the specification [19, 56]. However, this experiment resulted
in a new finding that for a total of 114/347 window APIs
(i.e., 91 properties and 23 methods), named properties can
shadow native properties that would otherwise appear on the
object in at least one browser, resulting in DOM Clobbering.
This includes security-sensitive APIs such as the cache
storage [34], notification API [67], trusted types [35], and
web storage [68]–to name only a few instances. The complete
list of clobbered window methods and properties is in
Table 13 of §A.2. We observed that for 57/114 clobbered
APIs, there is at least one browser that disagrees with others.

5. Detection and Prevalence
The second part of this paper intends to evaluate the impact,

prevalence and variety of DOM Clobbering vulnerabilities
in real-world web applications (RQ2 of §3). In §5.1, we first
present TheThing, an automated DOM Clobbering detection
tool. Then, in §5.2, we present our experiment results.

5.1. Detection
We formulate the problem of detecting DOM Clobbering

vulnerabilities into a series of data flow analysis tasks
where we identify clobberable JavaScript variables, object
properties, and native APIs whose value ultimately reach
security-sensitive instructions, such as script src and eval.
Identifying such data flows via pure static analysis is
not an easy task given the dynamic nature of client-side
JavaScript programs [32, 69, 70] and the scale of the analysis
as studying DOM Clobbering vulnerabilities requires the
collection and analysis of hundreds of webpages of real web
applications. Accordingly, we use and extend state-of-the-art
property graphs for JavaScript and graph traversals [32] to
identify potentially-vulnerable data flows and then use forced
execution to confirm the presence of the vulnerability.

Figure 1 shows the architecture of TheThing. At a high
level, it has three main components: (i) a web crawler
to collect webpages’ data and the JavaScript code, (ii) a
vulnerability analysis component that uses property graphs
and traversals for identifying potential DOM Clobbering
sources and capturing data flows to security-sensitive sinks,
and finally (iii) a vulnerability verification component that
dynamically confirms the candidate data flows by instru-
menting the code and forcefully executing it in a browser
to check if the flow can occur at runtime. The rest of this
section details each component.

7

Figure 1: Architecture of TheThing.

5.1.1. Data Collection

To collect the client-side code of web applications, we
developed a JavaScript-enabled crawler leveraging Pup-
peteer [71] and Chrome DevTools Protocol (CDP) [72].
Starting from a seed URL of the website under test, it visits
the webpages following a depth-first strategy, and stops when
it doesn’t find new URLs, or the maximum of 100 URLs
is reached. During the visit, it collects the page resources
(e.g., scripts) and runtime state values (i.e., fired events and
DOM objects’ properties) using the CDP and Puppeteer.

5.1.2. Vulnerability Analysis

Given the webpages’ data collected by the crawler,
TheThing creates a property graph of the client-side
JavaScript program leveraging a modified engine of JAW [32].
Then, we formulate the problem of finding potential DOM
Clobbering data flows into a series of graph traversal queries.
Hybrid Property Graphs. HPGs are graph-based repre-
sentations of client-side JavaScript programs that unify
multiple static code representations and runtime state values.
State values are event traces and environment properties,
e.g., the values of cookies and web storage. The static
code representation comprises several graphs, e.g., Abstract
Syntax Tree (AST), Control Flow Graph (CFG) and Program
Dependence Graph (PDG) that model the nesting of the
syntactical constructs of a program, the order and conditions
for the execution of program instructions, and the data flow
and control dependencies within the statements of a program,
respectively. HPGs also model the event-driven transfer of
control within JavaScript programs via the Event Registration,
Dispatch and Dependency Graph [32]. Finally, they include
Semantic Types, which are labels initially assigned to source
and sink nodes to capture the semantic of those instructions
and then propagated through the graph following the program
calculation. These representations are encoded in a directed
graph in which nodes and edges can have labels and key-
value properties, known as a labeled property graph [32, 73].
Model Construction. After collecting the webpages’ scripts
and state values, TheThing instantiates an HPG, and imports
it into a Neo4j docker instance [74], allowing the graph to be
traversed declaratively using the Cypher query language [75].
Unfortunately, we could not use JAW as-is and modified it
to address several of its shortcomings. First, when building a
graph, JAW normalizes the webpage code by combining code
inside script tags into a single script. However, identifying
DOM Clobbering sources may require to distinguish the
code across two different scripts due to JavaScript variable

hoisting [41] and double-clobbering [17]. For example, a
runtime error in one script causes the browser to stop parsing
that script, and continue with parsing of the rest of the
scripts. Hence, variables initialized in the first script are
treated as undefined and can be a candidate DOM Clobbering
source. Such runtime errors can be caused intentionally by
attackers by a preliminary clobbering, e.g., clobbering a
native DOM function that is invoked in a script shadows its
value to an HTML element, which is not callable, leading
to a runtime error (Cf. Table 3). Accordingly, we changed
the normalization procedure to keep track of the script of
origin for each AST node.

Second, the semantic types of JAW are tailored for client-
side CSRF vulnerabilities and are not sufficient to model
DOM clobbering. Accordingly, we added a new set of generic
semantic types for DOM Clobbering sources (Cf. Tables 3
and 9) and security-sensitive JavaScript sinks (Cf. Table 8).

Third, JAW does not fully support ES6, resulting in impre-
cise control and data flow models. Accordingly, we applied
several enhancements. For example, we added support to
bind the function call arguments to their definition parameters
when the code uses the ES6 Rest parameters [76] and the
Spread operator [77] which improves the precision of the
call graph and PDG edges. Also, we created bindings for
the this object depending on the calling context [78],
and the binding for the arguments object for non-arrow
functions [79] to improve pointer analysis tasks.
Analysis Traversals. After construction of an HPG, we
traverse it to identify DOM Clobbering source nodes in the
graph. Table 3 presents the various types of DOM Clobbering
sources and their properties. The table shows that clobberable
native DOM APIs discovered in §4.2.3 can act as a DOM
Clobbering source. Identifying these objects in the program
is a matter of searching for a pre-defined syntactic structure,
which is similar to other taint-style vulnerabilities like client-
side XSS. However, contrary to the traditional taint analysis,
not all DOM Clobbering sources are pre-defined syntactic
objects. Instead, they can be a specific property of a program,
identifying which requires tracking the propagation of data
flows within the program itself. This is because any used
variable that is undefined within its execution context (i.e.,
previously not declared and assigned) can act as a DOM
Clobbering source. To identify such sources, we use PDG
data dependency edges, which specify that a variable defined
at a source node is subsequently used at the destination
node. Specifically, we query the graph for Identifier nodes
containing a variable v with no incoming PDG edge from
any AssignmentExpression or VariableDeclaration nodes that

8

Object DOM Clobbering Source When?

v S1: v ∈ NP, CLOB(v)
S2: v /∈ NP, v and window.v are not assigned before, v is not
declared with var, let and const before

window.v S3: v ∈ NP, CLOB(v)
S4: v /∈ NP, v and window.v are not assigned before, v is
not declared with var afterwards within the same script, or
anywhere before
S5: v /∈ NP, v or window.v is assigned or declared with any of
the var, let and const keywords within any previous script
that contains an invocation of function f such that f ∈ NP,
CLOB(f)

document.v S6: v /∈ NP
S7: v ∈ NP, CLOB(v)

Legend: NP= native property; CLOB(v)= v is a clobberable NP based on §4.2.3.

TABLE 3: Description of properties of DOM Clobbering sources.

assign to or declare the variable v. If there is such PDG
edge, we further check whether the declaration/ assignment
statement can hinder the clobberability of v based on the
criteria in Table 3, which can depend on the declaration
scope (i.e., same script or not), declaration position (i.e.,
before or after), and the declaration keyword (e.g., var vs
let) of that statement.

After identifying the source nodes, we associate to each
of them a label that captures the semantic type of the
source, e.g., a clobberable native property or custom variable
(Cf. Table 9). Then, given a list of JavaScript sinks, we
identify each of them in the graph and assign each a
relevant semantic type. Semantic types assigned to sink
instructions are propagated to other functions that encapsulate
the same semantic, e.g., the type WIN_LOC_WRITE is set
for instructions that set the value of window.location,
such as window.location.replace(), and is then
propagated to all other developer-defined functions that can
set its value through one of their parameters. TheThing
considers different sink types to enable us to capture the
potential consequences of DOM Clobbering. The complete
list of sinks is in Table 8, which is derived by surveying and
aggregating the JavaScript sinks considered in prior academic
and non-academic resources (see, i.e., [1, 5, 36, 37, 80–
90]). Finally, we conduct forward data flow analysis by
propagating semantic types from sources to sinks, and select
those flows where a node with a sink semantic type is
tainted with a source type (i.e., pick up the attacker-controlled
values). The concrete queries are presented in Table 11 of
§A.2. This component outputs a set of paths with potential
data flows from a DOM Clobbering source to a sink.

5.1.3. Vulnerability Verification

Given a set of potential DOM Clobbering data flows,
the goal of this step is to verify each flow and eliminate
potential false positives. To accomplish this goal, TheThing
features a light-weight, in-browser dynamic taint analysis
engine leveraging Iroh.js [33]. After instrumenting the code
with Iroh for dynamic analysis, we first check whether the
source variable of the data flow is clobberable by creating a
suitable HTML clobbering payload for that variable using
the DOM Clobbering classes of §4. We inject the payload
to the DOM tree and subsequently verify the clobberability
of the source variable by dynamically logging its value at

.
Threat # Sinks # Flows # Conf. # Pages # Sites

Client-side XSS 37,941,540 3,688 3,677 1,572 474
Request Forgery 2,555,147 1,406 1,403 541 398
Storage Manipulation 1,047,512 1,369 1,365 418 382
Open Redirect 1,306,603 1,228 1,227 391 385
JSON Injection 9,610,162 793 793 345 343
Cookie Manipulation 1,702,340 266 266 204 195
Websocket Hijacking 21,252 367 367 183 147
RegEx Injection 13,325,791 284 284 98 98
Doc. Domain Manip. 55,266 85 85 69 69
postMessage Manip. 119,971 0 0 0 0
File Read Path Manip. 57,789 0 0 0 0

Total 67,743,373 9,486 9,467 3,821 491

Legend: Conf.= Dynamically Confirmed

TABLE 4: Prevalence and impact of DOM Clobbering in Tranco top 5K
sites. The table shows the number of clobberable data flows to security
sensitive sinks of Table 8, the number of affected webpages, and websites.

the source location.
As the next step, we confirm the existence of the data

flow to the sink instructions. To do that, we first taint each
clobberable source, execute the program by loading it via
Puppeteer, and check if we can observe the data flow reported
by the static analyzer. If that is not the case, we forcefully
execute the path toward sinks to check if there is an execution
of the program in which the data flow to the target sink occurs.
We use forced execution to find candidate pages among those
where Puppeteer could not connect sources with sinks, and
later validate the presence of the vulnerability manually.
Specifically, for each branch in the path control flow, we
forcefully execute the program once for the true and once for
the false branch, until we hit a execution path with the target
data flow, or we exhaustively checked possible execution
paths. We observed that the number of branches between
DOM Clobbering sources and sinks is in practice small (i.e.,
less than 10), as we will show in §5.2. Finally, as forced
execution may also lead to spurious execution paths, we
manually validate the decision reported by TheThing and
examine the exploitability.

5.2. Prevalence in the Wild
We quantified the prevalence and impact of DOM Clob-

bering on the top 5K websites using the Tranco list [91]
of Nov 1st, 2021 (ID: Y3JG), where we first selected the
top 5K domains by excluding the duplicates like local
versions of websites (e.g., google.com vs google.de), and
then instantiated TheThing for each of the them.
Data Collection Statistics. Starting from the 5K seed URLs,
TheThing collected 205,696 webpages, ranging between 1 to
91 pages per site (41 pages on average). Out of the 205,696
webpages, 187,280 are unique pages based on their set of
scripts. From the 187K pages, TheThing extracted 18,351,815
scripts with a total of 24,664,686,928 LoC. Accordingly,
TheThing generated 187,280 HPGs by processing an average
of 98 scripts and 131,700 LoC per page.
Vulnerability Prevalence. The analysis of 187,280 HPGs
resulted in the identification of 20,580,350 DOM Clobbering
sources and 67,743,373 sinks, which amounts to an average
of 110 sources and 362 sinks per webpage. Out of these,
static analysis revealed a total of 9,486 potential data flows
from the sources to the sinks, from which the majority (i.e.,

9

9,467) were confirmed dynamically. We observed that these
vulnerable data flows affect around 2% of the webpages (i.e.,
3,821 out of 187,280) and 9.8% of the tested websites (i.e.,
491 out of 5K) in total. Table 4 summarizes our findings.
Vulnerability Impact. We observed that the 9,467 vulner-
abilities can have different security implications, as shown
in Table 4. The most common consequence is XSS that
accounts for around 38.8% of the vulnerabilities, whereas
the least common consequence is document domain ma-
nipulation [83, 84] that corresponds to less than 1% of
the total vulnerabilities. Other common consequences were
client-side state manipulation (17.2%), client-side request
forgery (14.8%) and DOM-based open redirection (12.9%).
Finally, the remaining 15.3% of vulnerabilities had other
repercussions like JSON injection and Websocket connection
hijack. We provide more information on each of these threats
in Table 8 of §A.2.
Verification and False Positives. Considering the high
number of reported data flows by the static analyzer (Cf.
§5.1.2), it was infeasible to verify all of them manually.
Instead, we followed a semi-automatic approach leveraging
a combination of dynamic analysis, forceful execution and
manual analysis, as detailed in §5.1.3.

We observed that in a large number of cases (46.1%,
i.e., 4,373 flows), the dynamic verification component can
successfully confirm the existence of the vulnerability by
loading the page and executing it via Puppetter, whereas
in the remaining cases (i.e., 5,113 flows), it needs to force
execute between one to ten conditional branches (four on
average) before it can confirm or reject the data flow and
terminate. As a result of this process, the verifier eliminated
a total of 19 FPs across 11 of the 491 vulnerable sites, and
confirmed the rest (i.e., 5,094 flows within 2,643 webpages of
491 sites). We manually verified and investigated the reason
for each FP, and discovered that eight FPs occur during the
data flow analysis for identification of DOM Clobbering
sources, and 11 during the data flow analysis from sources
to sinks. The former cases happened because a variable
was declared or assigned using a dynamic code generation
construct for which the statement nodes and PDG edges
were missing in the HPG, and the latter cases occurred due
to dynamically fetched code where the value of the tainted
variables changed, inaccurate pointer analysis for dynamic
property lookups, and removal of event handlers that changed
the tainted variables.

Finally, we manually validated the feasibility of the
forcefully executed data flows by randomly selecting two
pages per site, from the 2,643 pages of the 491 websites
whose data flows were confirmed by forced execution. Our
random sampling included 491 sites, 982 pages and 2076
data flows, out of which we could not determine a realistic
execution path for at least 42 data flows in 42 sites, leaving
us with 2,034 vulnerable data flows of 491 websites.

5.3. Confirming Exploitability of Vulnerabilities
We manually examined whether the identified vulnera-

bilities can be effectively exploited by an attacker. Given

the high number of affected webpages, we randomly se-
lected two vulnerable pages per each of the 491 affected
sites, and subsequently checked whether we can insert a
DOM Clobbering markup in the page by leveraging the
functionalities offered by the application, or through URL
parameters, which could allow us to overwrite the clobberable
variable identified by TheThing. To be able to use protected
functionalities offered by the websites (e.g., creating posts,
adding comments, etc) and also prevent any side effects for
other users, we created our own test accounts for 358 sites
that supported this feature without monetary costs, and for
the rest, we limited our tests to the public functionalities (e.g.,
search) without persisting any data. As a result, we created
a proof-of-concept exploit for 44 websites in total, affecting
popular sites and functionalities like Trello boards, Wiki
pages in WikiBooks and WikiDot, comments in Vimeo and
VK, reviews in TripAdvisor and OpenTable, posts in Fandom
and JustPaste, surveys in SuveryMonkey, poster designs in
PosterMyWall, and finally item searches in GitHub Shop,
AliExpress, AliBaba and Telam News–to name only a few
examples. The exploits enable an attacker to achieve XSS,
open redirect, and client-side request forgery in 35, five, and
four sites, respectively. We refer interested readers to §A.1
for a few case studies of the confirmed attacks.

6. Defenses
This section addresses RQ3 of §3. First, in §6.1, we have

a critical look at the existing countermeasures and evaluate
their robustness and cost-benefit tradeoff leveraging what we
learned from Sections 4 and 5. Then, in §6.2, we analyze the
common mistakes of the 491 vulnerable sites (see §5), and
distill a list of recommendations and secure coding patterns
that can resolve those issues.

6.1. Evaluation of Existing Countermeasures

Disabling DOM Clobbering Features. DOM Clobbering
can be solved by disabling named properties [19, 25, 27].
According to Chrome telemetry [28], disabling named prop-
erties for clobbered variable accesses could break ~10.5%
of the webpages. Our results of §5.2 are in line with these
numbers, and we observed that 13.3% of the webpages use
at least an instance of clobbered variable accesses.

As webpages tend to reuse code via shared scripts, a patch
in a script may fix multiple websites. Accordingly, using the
number of webpages may not accurately quantify the cost
of fixing breakage. As an alternative, we can measure the
number of affected websites, and our results show that the
affected pages do not concentrate on a small number of sites,
but they scatter over 51.2% of the top 5K sites.

While breakage adequately measures the cost of this
solution, it may not be a good indicator for the actual
benefits, i.e., fixed websites. Our results show that 118
websites of 2,561 potentially broken sites will be fixed,
which is about 4.61% of the broken websites (and 2.4% of
the total). However, our results also show that a large fraction
of vulnerable websites are not considered by breakage. In
particular, we found 373 websites (76% of the vulnerable

10

HTML Sanitizer � Ò � � D
ef

au
lt

St
ri

ct

Bypassed Pct. Ref.

Client-side JS
1. DOMPurify 8.7K 534 49.7K 7.9M 29,995 95.4% [7]
2. Google Closure Lib. 4.3K 1K - 117K - - [92]
3. JS-XSS 4.4K 584 136K 8.7M 25,592 81.4% [93]
4. Sanitize-HTML 2.8K 316 102K 4.7M 79 0.25% [94]
5. Google Caja 1.1K 123 - - 27,951 88.9% [95]

Node.js
1. Insane 394 21 - 55.3K 5 0.02% [96]
2. Bleach 117 19 - 1.6K 2,288 7.2% [97]
3. Angular-sanitize 100 237 49.1K 936K - - [98]
4. Yahoo html-purify 40 6 - 708 28,807 91.6% [99]
5. Arcgis 11 2 - 32.6K - - [100]

Python
1. Mozilla Bleach 2.3K 230 155K 17.5M 31,132 99.05% [101]
2. LXML 2K 481 216K 29.9M 28,211 89.7% [102]
3. HTML Sanitizer 61 19 - 17.9K 332 1.06% [103]
4. Htmllaundry 27 4 - 1.1K 1,460 4.6% [104]
5. Django-html-sanitizer 20 62 - 2.8K - - [105]

PHP
1. Htmlpurifier 2.4K 284 82.7K 2.5M - - [106]
2. Html-sanitizer 333 36 - 30.8K - - [107]
3. Symfony Sanitizer 104 1 - 7 - - [108]
4. HTMLawed 30 14 - 390K 21,211 67.4% [109]
5. Typo3 Sanitizer 13 10 - 88.9K 23,942 76.1% [110]

C#
1. AntiXssEncoder 2.6K 1K - 6.4K 31,390 99.8% [111]
2. HtmlSanitizer 1.1K 162 1.8K 108K 654 2.08% [112]
3. AJAX Toolkit 275 133 4.2K 264 - - [113]
4. NSoup 147 46 - 72 - - [114]
5. HtmlRuleSanitizer 50 16 30 308 - - [115]

Java
1. Jsoup 9.2K 2K 98.4K - - - [116]
2. OWASP HTML Sanitizer 647 171 - - - - [117]
3. Antisamy 105 72 - - - - [118]
4. HtmlCleaner - - - 824 28,951 92.1% [119]

Total Vuln. (+) 16 13

Legend: �= GitHub Stars; Ò= GitHub Forks; �= GitHub UsedBy; �= Monthly Downloads;
= Vulnerable; = Partially Vulnerable; = Not Vulnerable

TABLE 5: Robustness of top five HTML sanitizers of web programming
languages against the 31.4K DOM Clobbering instances of §4.2. The
table shows the results for both the default and the most strict sanitizer
configurations. The tested sanitizer versions are in Table 10.

ones and 7.5% of the total) that will benefit from such a
solution. Overall, when comparing the cost and benefits, the
ratio of vulnerable over potentially-broken websites is about
1:5.2 (i.e., 491 vulnerable and 2,561 potentially-broken sites).
HTML Sanitization. HTML sanitizers can sanitize the input
markups before adding them to the DOM tree, e.g., by
removing the id and name attributes from certain (combina-
tions of) HTML tags (Cf. §4). To assess the robustness of
the popular HTML sanitizers against DOM Clobbering, we
dynamically tested them against all of the DOM Clobbering
instances we identified in §4. First, we selected the top
five web programming languages based on the GitHub 2021
Octoverse report [120], i.e., JavaScript, Python, Java, C#
and PHP. We considered both client-side and server-side
JavaScript (i.e., node.js). Then, we searched for sanitizers of
each language and selected the top five based on their GitHub
stars, forks and UsedBy, and the number of downloads in
their respective package managers (e.g., npm for node.js,
packagist for PHP, etc). This process led to the identification
of 29 HTML sanitizer libraries, as for Java, we identified
only four sanitizers.

After identifying the popular sanitizers, we input the 31.4K

DOM Clobbering markups identified in §4 to each of them,
and for each input vetted whether the sanitizer removes
or changes the named properties in the output markup.
For each sanitizer, we tested both the default and most
strict configuration that it offers. We marked a sanitizer as
vulnerable if there is at least one clobbering markup that
bypasses the sanitizer without being altered. Finally, we
marked sanitizers as partially vulnerable when they encode
the < and > symbols of HTML tags but do not remove
or change the DOM Clobbering named properties because
encoding these symbols would not help when applications
expect inputs in an HTML format.

Table 5 summarizes our findings. In total, we observed
that 16 and 13 out of 29 sanitizers are vulnerable to at
least one DOM Clobbering markup in their default and most
strict sanitization configuration, respectively. In both of the
configurations, four sanitizers are only partially vulnerable, as
they escape the markup rather than cleansing the named prop-
erties. Finally, when looking at the remaining 13 sanitizers,
we observe that they implement a robust, enabled-by-default
defense. However, in all cases, they remove named properties
unconditionally, i.e., for all input markups including those
combinations that do not lead to DOM Clobbering, e.g., an
anchor tag with name=x does not clobber the variable x.
While such a strict approach is effective, it may hinder the
usability of these libraries in cases where developers need
to use id and name attributes for legitimate functionalities.
Content-Security Policy (CSP). When attackers can clobber
the src attribute of dynamically created scripts, they can
load and execute arbitrary JavaScript code. In these cases, the
CSP script-src directive [29] can be used to constrain
the value of script sources to a set of trusted domains,
preventing attacker-loaded code to be executed [12, 22, 30].
However, unlike malicious JavaScript injected by the attacker,
injected HTML code is not blocked by CSP. Accordingly,
CSP does not mitigate other variants of DOM Clobbering that
do not require script src manipulation, e.g., clobbering the
parameters of dynamic code evaluation constructs like new
Function() can lead to CSP-bypassable XSS. Our eval-
uation in §5.2 shows that 37.7% of the DOM Clobbering
vulnerabilities that lead to XSS (i.e., 1,385 out of 3,677),
which accounts for 14.7% of the total vulnerabilities can be
mitigated by CSP, whereas the remaining ones cannot.
Freezing Object Properties. Another way to mitigate
DOM Clobbering is to freeze DOM objects [51], e.g., via
Object.freeze() method [121], which prevents the
object to be overwritten by named DOM elements. While
effective, determining all objects and object properties that
need to be frozen is a non-trivial, error-prone task for web
developers. Also, sealed objects cannot be changed anymore,
hindering the dynamic composition of webpages. Finally,
native properties cannot be frozen, rendering this approach
ineffective when the DOM Clobbering source is a clobberable
native property, which accounts for ~21.5% of vulnerabilities
(i.e., 2,037 out of 9,467) in §5.2.

11

.
Code Pattern Description # Flows # Pages # Sites

A VAR1 is not declared or assigned yet, thus window.VAR1 is clobberable. 3,134 1,214 143

B BA is a clobberable built-in API (§4.2.3), thus BA, window.BA and document.BA are clobberable. 2,037 832 99

C Assignment to document properties is always shadowed by DOM Clobbering (§4.2.3). 1,896 655 81

D VAR1 is declared with let that does not create property on window, thus window.VAR1 is
clobberable.

367 153 18

E VAR1 is initialized without var in the same script and after the sink, but this does not result in hoisting. 1,635 792 116

F VAR1 is initialized with var, but in a different script and after the sink statement. 121 50 12

G VAR1 is initialized in a script where a built-in method can be clobbered and cause an error in parsing
that script, hence window.VAR1 can be clobbered in a subsequent script (double clobbering).

53 36 7

H VAR1 is initialized in a different script as a property of the window or without any modifiers after the
sink statement, thus window.VAR1 is clobberable.

224 89 15

Legend: BA= Built-in API; WinDoc = Window or Document Object; [code]= Alternative code statement; Red= Clobberable; Yellow = script 1; Orange = script 2;

TABLE 6: Overview of DOM Clobbering code patterns in the wild. Different background colors represent code in two different script tags.

6.2. Secure Code Patterns

Our evaluation of existing DOM Clobbering counter-
measures in §6.1 revealed that they are not sufficient for
complete protection in a large number of cases. In this section,
we have a closer look at the variety of DOM Clobbering
vulnerabilities in real web applications (§5.2), identifying
vulnerable behaviours and the common types of coding
mistakes. Then, we use these vulnerable behaviours to distill
a list of recommendations and defensive coding patterns
that developers could apply to prevent DOM Clobbering.
To achieve this objective, we extracted the vulnerable lines
of code and characterized them based on their high-level
syntax and semantics, identifying eight distinct vulnerable
code patterns in the wild.

Table 6 summarizes our findings. We observe that the most
common mistakes are patterns A and E, in which the devel-
oper references an undefined variable through the window
object, and then use the result in a sensitive instruction,
whereas the least common, but also more complex mistakes
are patterns F, G and H where the vulnerability originates
due to the position of the instructions that span across two
different script tags. Other common mistakes are patterns B
and C, where developers treat custom and native document
and window properties as trusted values that can be safely
used in sensitive operations. The rest of this section presents
secure coding patterns that can prevent DOM Clobbering.
Explicit Variable Declarations. As shown in Table 6, a key
element enabling DOM Clobbering is use of the || operator
to rely on specific defaults when the primary, intended
variable or property is undefined. As an alternative solution,
developers can initialize those variables with the default
value when they are undefined using var declarations, which
prevents named properties to overshadow them according to
the named property visibility algorithm [45]. This solution

could patch the patterns A, D, E, F, and H. When the value
needs to be used in multiple scripts, as in patterns F and H,
the declaration should be in the same (or a previous) script,
but not in subsequent ones.
Strict Type Checking. Another common mistake en-
abling DOM Clobbering is treating DOM properties, like
document and window properties as safe, trusted values
(e.g., patterns B, C, and G). Instead, developers should extend
the trust boundary to these properties, verifying their type
before using them in security-sensitive instructions, e.g.,
using the instanceof [122] and typeof [123] operators.
Do Not Use Document for Global Variables. Properties of
document can always be overwritten by DOM Clobbering,
even immediately after they are assigned a value, as in
pattern C. Accordingly, developers should refrain from using
document as a mean to store and retrieve global values.
Instead, they can declare variables with const or var in
the global context, or use the globalThis object [124].
Namespace Isolation. While robust sanitizers in §6.1 re-
move named properties, an alternative solution is to separate
the namespace of variables defined by JavaScript code and
named properties in user-generated markups. For example,
we observed that the markdown to HTML converter of ap-
plications like GitHub and BitBucket prefixes id and name
attribute values of user-generated markup with a specific
string. Motivated by this solution, one can monitor runtime
changes in the DOM tree via the MutationObserver
API [125], and prefix named properties of all dynamically
inserted markups before adding them to the tree, which
patches all patterns in Table 6.

7. Summary and Discussion
Clobbering Markups Come In Many Forms. In this
paper, we proposed a systematic technique to identify DOM

12

Clobbering markups, and showed that they come in many
forms, with a total of 31,432 attack markups that rely on five
different techniques, including 148 new instances and 30,803
new variants. We observed that browsers exhibit divergent
behaviours when handling named properties. For example,
for a significant fraction of the markups (i.e., 99%), there
is at least one browser that disagrees with others, making it
increasingly more challenging to enforce robust defenses.
DOM Clobbering is Ubiquitous. DOM Clobbering vulner-
abilities are prevalent, affecting over 9.8% of the top 5K
sites, with the consequences ranging from XSS to user state
manipulation, request forgery and client-side open redirects
in the majority of the cases, i.e., 83.7% (see §5.2).
Defenses Helpful but May not Completely Cut it. The
evaluation of existing DOM Clobbering countermeasures (§6)
suggests that each can only mitigate a fraction of the attacks.
For example, 55% of the popular HTML sanitizers are
vulnerable to at least one of the 31K clobbering markups by
default, and CSP cannot mitigate over 85% of the identified
vulnerabilities. Protecting such a fraction of the attack
surface without switching named properties off completely
is a more costly task, requiring developers to be aware of
corner case behaviors of browsers and revisit the design and
implementation of their systems, e.g., strict type checking,
explicit variable declarations, or namespace isolation.
Open Science and Website. To support the future research
effort, we publicly release TheThing [126], the automated
browser testing pipeline [127] that identifies clobbering
markups (see §4), and an interactive version of markups1.
Ethical Discussion. Our experiments on live sites do not
target any real user. Tests requiring to persist data, e.g.,
store a markup, is exclusively restricted to user accounts
that we created on those sites. Also, we excluded testing
functionalities where we could not control the impact and
visibility of the injected markup (e.g., publicly accessible
posts and comments). Tests on public functionalities was
performed without persistently injecting any markup.

The vulnerabilities and security risks identified in this
paper affects 491 websites and 16 sanitizer libraries. We
started the process of notifying the affected parties in March
2022 following the best disclosure practices [128, 129],
where we prioritized our reports by severity. We sent an
initial notification that includes the vulnerability details, or a
proof-of-concept exploit, followed by an additional reminder
every three weeks to maximize the remediation rate. At the
time of preparing the camera-ready, we have notified all
affected parties at least once, out of which 72 sites have
already confirmed the issues, and 21 sites patched them, such
as GitHub, Vimeo, Fandom, TripAdvisor and SuveryMonkey.

8. Related Work
Reusing the webpages’ legitimate JavaScript code to obtain

arbitrary client-side code execution have been the subject
of several research endeavors in the past. Most notably,
Lekies et. al. [12] described a new attack where small

1. https://soheilkhodayari.github.io/DOMClobbering

fragments of JavaScript code, known as script gadgets, are
unexpectedly executed as a result of a non-script markup
injected by attackers. The authors used a modified browser
engine [1] to measure the prevalence of these gadgets,
and demonstrated that they are prevalent and can bypass
existing XSS mitigations, such as HTML sanitizers [7] and
CSP [29, 30]. Later, Roth et. al. [130] quantified the impact
of script gadgets on CSP in the wild. Similarly, Heiderich
et. al. [6] discovered mutation-based XSS attacks (mXSS),
showing how specific browser-based mutations of DOM
content and insecure JavaScript that reads and rewrites HTML
elements can transform initially secure DOM markup to code.
While all these three attacks can transform non-script markup
to executable code, the elements enabling DOM Clobbering
is largely different, i.e., script gadgets rely on event handlers
and mXSS attacks abuse innerHTML mutations, whereas
DOM Clobbering is the result of a complex interplay of the
default browser behaviors and insecure use of named property
accesses in JavaScript programs. Contrary to these works, our
study focuses on DOM Clobbering, systematically testing
mobile and desktop browsers, identifying insecure coding
patterns using both static and dynamic analysis techniques,
and demonstrating their exploitability.

Multiple instances of DOM Clobbering vulnerabilities
have been discovered in the last 12 years by both aca-
demics [7, 13, 131] and security analysts [14, 21–23, 54],
with the first public instance identified in 2010 by Rydstedt
et. al. as a way to circumvent frame busters [13]. The term
‘DOM Clobbering’ itself emerged in 2013, when Gareth
Heyes [14] demonstrated how this class of vulnerabilities can
escalate to client-side code execution. Due to such nefarious
consequences of DOM Clobbering, prior academic studies
has primarily focused on its defenses (e.g., [7, 26, 51]).
Most notably, Heiderich et. al. proposed the JSAgents
library [51] and later the DOMPurify sanitizer [7] to mitigate
the security implications induced by markup injection, such
as DOM Clobbering and client-side XSS [1, 5]. Our research
completes the missing pieces of these works by systematically
studying DOM Clobbering attack techniques, their preva-
lence, and effectiveness of the existing countermeasures.

9. Conclusion
In this paper, we performed, to the best of our knowledge,

the first comprehensive study of DOM Clobbering, system-
atically covering clobbering techniques, browser behaviours,
vulnerability prevalence, and defenses. Starting with a com-
prehensive survey of existing literature and dynamic analysis
of 19 web browsers, we presented the first taxonomy of DOM
Clobbering, uncovering 31K distinct markups that use five
different techniques to clobber JavaScript variables. Then,
we presented TheThing, the first DOM Clobbering detection
tool, and instantiated it on the top of the Tranco top 5K sites,
showing that DOM Clobbering vulnerabilities are prevalent.
Finally, we demonstrated that existing countermeasures are
not sufficient to mitigate a significant fraction of the vulner-
abilities, and accordingly proposed several recommendations
and secure coding patterns for developers.

13

https://soheilkhodayari.github.io/DOMClobbering

Acknowledgments
This work received funding from the European Union’s

Horizon 2020 research and innovation programme under the
TESTABLE project (grant agreement 101019206).

References
[1] S. Lekies, B. Stock, and M. Johns, “25 million flows later: large-scale

detection of DOM-based XSS,” in CCS, 2013.
[2] Y. Nadji, P. Saxena, and D. Song, “Document Structure Integrity: A

Robust Basis for Cross-site Scripting Defense.” in NDSS, 2009.
[3] J. Grossman, S. Fogie, R. Hansen, A. Rager, and P. D. Petkov, XSS

Attacks: Cross-Site Scripting Exploits and Defense. Syngress, 2007.
[4] J. Dahse and T. Holz, “Static Detection of Second-Order Vulnerabil-

ities in Web Applications,” in USENIX Security, 2014.
[5] M. Steffens, C. Rossow, M. Johns, and B. Stock, “Don’t Trust

the Locals: Investigating the Prevalence of Persistent Client-Side
Cross-Site Scripting in the Wild,” in NDSS, 2019.

[6] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius, and E. Z. Yang,
“mXSS Attacks: Attacking Well-secured Web Applications by Using
innerHTML Mutations,” in CCS, 2013.

[7] M. Heiderich, C. Späth, and J. Schwenk, “DOMPurify: Client-side
Protection Against XSS and Markup Injection,” in ESORICS, 2017.

[8] M. Samuel, P. Saxena, and D. Song, “Context-sensitive Auto-
sanitization in Web Templating Languages Using Type Qualifiers,”
in CCS, 2011.

[9] P. Saxena, D. Molnar, and B. Livshits, “SCRIPTGARD: Automatic
Context-sensitive Sanitization for Large-scale Legacy Web Applica-
tions,” in CCS, 2011.

[10] D. Bates, A. Barth, and C. Jackson, “Regular Expressions Considered
Harmful in Client-side XSS Filters,” in WWW, 2010, pp. 91–100.

[11] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel, “SWAP:
Mitigating XSS attacks using a reverse proxy,” in ICSE Workshop
on Software Engineering for Secure Systems, 2009.

[12] S. Lekies, K. Kotowicz, S. Groß, E. A. Vela Nava, and M. Johns,
“Code-reuse attacks for the web: Breaking cross-site scripting miti-
gations via script gadgets,” in CCS, 2017.

[13] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson, “Busting Frame
Busting: A Study of Clickjacking Vulnerabilities at Popular Sites,”
IEEE S&P, 2010.

[14] G. Heyes, “DOM Clobbering,” 2013, http://www.thespanner.co.uk/2
013/05/16/dom-clobbering/.

[15] N. Jenkins, “Sanitising HTML – The DOM Clobbering Issue,” 2015,
https://fastmail.blog/advanced/sanitising-html-the-dom-clobbering-
issue/.

[16] (2018) document.cookie DOM property can be clobbered using DOM
node named cookie. https://bugzilla.mozilla.org/show bug.cgi?id=14
20032.

[17] (2015) Pentest-Report DOMPurify. https://cure53.de/pentest-report
dompurify.pdf.

[18] Provide an opt-out for inputs overriding form DOM API. https:
//github.com/whatwg/html/issues/2212.

[19] Feature Proposal: no [OverrideBuiltins]. https://github.com/WICG/
document-policy/issues/16.

[20] (2018) Bypassing sanitization using DOM clobbering in HTML-
Janitor. https://hackerone.com/reports/308158.

[21] G. Heyes, “DOM Clobbering strikes back,” 2020, https://portswigge
r.net/research/dom-clobbering-strikes-back.

[22] M. Bentkowski, “XSS in GMail’s AMP4Email via DOM Clobbering,”
2019, https://research.securitum.com/xss- in-amp4email-dom-
clobbering/.

[23] (2019) Clobbering the clobbered vol.2. https://terjanq.medium.com/c
lobbering-the-clobbered-vol-2-fb199ad7ec41.

[24] DOM Clobbering affecting Google Analytics script. https://twitter.
com/zachleat/status/1387460811522813953.

[25] Feature proposal: Disable named access on window. https://github.c
om/WICG/document-policy/issues/32.

[26] A. Janc and M. West, “Oh, the Places You’ll Go! Finding Our
Way Back from the Web Platform’s Ill-conceived Jaunts,” in IEEE
EuroS&P Workshops, 2020, pp. 673–680.

[27] Disabling DOM clobbering. https://github.com/w3c/webappsec-

permissions-policy/issues/349.
[28] Chrome Platform Status: DOM Clobbered Variable Accessed. https:

//chromestatus.com/metrics/feature/timeline/popularity/1824.
[29] M. West, “Content Security Policy Level 3,” W3C Working Draft,

2022, https://w3c.github.io/webappsec-csp/#directive-script-src.
[30] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock,

“Complex security policy? a longitudinal analysis of deployed content
security policies,” in NDSS, 2020.

[31] S. Stamm, B. Sterne, and G. Markham, “Reining in the Web with
Content Security Policy,” in WWW, 2010, pp. 921–930.

[32] S. Khodayari and G. Pellegrino, “JAW: Studying Client-side CSRF
with Hybrid Property Graphs and Declarative Traversals,” in USENIX
Security, 2021.

[33] F. Maier. (2018) Iroh.js: Dynamic Code Analysis for JavaScript.
https://maierfelix.github.io/Iroh/.

[34] The CacheStorage Web API. https://developer.mozilla.org/en-
US/docs/Web/API/CacheStorage.

[35] K. Kotowicz, “Prevent DOM-based cross-site scripting vulnerabilities
with Trusted Types,” 2020, https://web.dev/trusted-types/.

[36] DOM-based open redirection. https://portswigger.net/web-security/d
om-based/open-redirection.

[37] Z. Banach, “Open redirect vulnerabilities and how to avoid them,”
2021, https://www.netsparker.com/blog/web-security/open-redirect-
vulnerabilities-netsparker-pauls-security-weekly/.

[38] F. Braun, M. Heiderich, and D. Vogelheim, “HTML Sanitizer API,
Section 4.2, DOM Clobbering,” W3C Draft Community Group Report,
2021, https://wicg.github.io/sanitizer-api/#dom-clobbering.

[39] DOM clobbering. https://portswigger.net/web-security/dom-based/do
m-clobbering.

[40] Undefined primitive type. https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global Objects/undefined.

[41] T. Rascia, “Understanding Variables, Scope, and Hoisting in
JavaScriptt,” 2021, https://www.digitalocean.com/community/t
utorials/understanding-variables-scope-hoisting-in-javascript.

[42] HTML Living Standard: Named Access on the Window Object.
https://html.spec.whatwg.org/multipage/window-object.html#nam
ed-access-on-the-window-object.

[43] HTML Living Standard: DOM Tree Accessors. https://html.spec.wh
atwg.org/multipage/dom.html#dom-tree-accessors.

[44] E. J. Etemad, T. A. Jr., T. Çelik, D. Glazman, I. Hickson, P. Linss,
and J. Williams, “Selectors Level 4, W3C Working Draft,” 2018.

[45] Web IDL Living Standard - Named Property Visibility Algorithm,
Sections 3.4.7 and 3.9.7. https://webidl.spec.whatwg.org/#legacy-
platform-object-abstract-ops.

[46] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song, “Towards
a formal foundation of web security,” in IEEE CSF, 2010.

[47] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for
cross-site request forgery,” in CCS, 2008, pp. 75–88.

[48] “Dynamic email in Gmail becoming generally available on July 2019,”
2019, https://workspaceupdates.googleblog.com/2019/06/dynamic-
email-in-gmail-becoming-GA.html.

[49] J. Peek, “GitHub Handling of Named HTML Elements Generated
by Repository Markdown Code,” 2014, https://github.com/gjtorikian/
html-pipeline/pull/111.

[50] V. Puzrin, “DOM Clobbering through Markdown Header anchors,”
2015, https://github.com/markdown-it/markdown-it/issues/28.

[51] M. Heiderich, M. Niemietz, and J. Schwenk, “Waiting for CSP –
Securing Legacy Web Applications with JSAgents,” in ESORICS,
2015, pp. 23–42.

[52] DOM Clobbering Vulnerability Reports in HackerOne. https://hack
erone.com/hacktivity?querystring=dom%20clobbering.

[53] DOM Clobbering Vulnerability Reports in Mitre. https://cve.mitre.or
g/cgi-bin/cvekey.cgi?keyword=dom+clobbering.

[54] (2019) Clobbering the clobbered — Advanced DOM Clobbering.
https://terjanq.medium.com/dom-clobbering-techniques-8443547e
be94.

[55] A. Nafeez, “DomFlow - Untangling the DOM for easy juicy bugs,”
2015, https://www.blackhat.com/docs/us-15/materials/us-15-Nafeez-
Dom-Flow-Untangling-The-DOM-For-More-Easy-Juicy-Bugs.pdf.

[56] HTML Living Standard. https://html.spec.whatwg.org/multipage/.
[57] DOM Living Standard. https://dom.spec.whatwg.org/.

14

http://www.thespanner.co.uk/2013/05/16/dom-clobbering/
http://www.thespanner.co.uk/2013/05/16/dom-clobbering/
https://fastmail.blog/advanced/sanitising-html-the-dom-clobbering-issue/
https://fastmail.blog/advanced/sanitising-html-the-dom-clobbering-issue/
https://bugzilla.mozilla.org/show_bug.cgi?id=1420032
https://bugzilla.mozilla.org/show_bug.cgi?id=1420032
https://cure53.de/pentest-report_dompurify.pdf
https://cure53.de/pentest-report_dompurify.pdf
https://github.com/whatwg/html/issues/2212
https://github.com/whatwg/html/issues/2212
https://github.com/WICG/document-policy/issues/16
https://github.com/WICG/document-policy/issues/16
https://hackerone.com/reports/308158
https://portswigger.net/research/dom-clobbering-strikes-back
https://portswigger.net/research/dom-clobbering-strikes-back
https://research.securitum.com/xss-in-amp4email-dom-clobbering/
https://research.securitum.com/xss-in-amp4email-dom-clobbering/
https://terjanq.medium.com/clobbering-the-clobbered-vol-2-fb199ad7ec41
https://terjanq.medium.com/clobbering-the-clobbered-vol-2-fb199ad7ec41
https://twitter.com/zachleat/status/1387460811522813953
https://twitter.com/zachleat/status/1387460811522813953
https://github.com/WICG/document-policy/issues/32
https://github.com/WICG/document-policy/issues/32
https://github.com/w3c/webappsec-permissions-policy/issues/349
https://github.com/w3c/webappsec-permissions-policy/issues/349
https://chromestatus.com/metrics/feature/timeline/popularity/1824
https://chromestatus.com/metrics/feature/timeline/popularity/1824
https://w3c.github.io/webappsec-csp/#directive-script-src
https://maierfelix.github.io/Iroh/
https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage
https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage
https://web.dev/trusted-types/
https://portswigger.net/web-security/dom-based/open-redirection
https://portswigger.net/web-security/dom-based/open-redirection
https://www.netsparker.com/blog/web-security/open-redirect-vulnerabilities-netsparker-pauls-security-weekly/
https://www.netsparker.com/blog/web-security/open-redirect-vulnerabilities-netsparker-pauls-security-weekly/
https://wicg.github.io/sanitizer-api/#dom-clobbering
https://portswigger.net/web-security/dom-based/dom-clobbering
https://portswigger.net/web-security/dom-based/dom-clobbering
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://www.digitalocean.com/community/tutorials/understanding-variables-scope-hoisting-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-variables-scope-hoisting-in-javascript
https://html.spec.whatwg.org/multipage/window-object.html#named-access-on-the-window-object
https://html.spec.whatwg.org/multipage/window-object.html#named-access-on-the-window-object
https://html.spec.whatwg.org/multipage/dom.html#dom-tree-accessors
https://html.spec.whatwg.org/multipage/dom.html#dom-tree-accessors
https://webidl.spec.whatwg.org/#legacy-platform-object-abstract-ops
https://webidl.spec.whatwg.org/#legacy-platform-object-abstract-ops
https://workspaceupdates.googleblog.com/2019/06/dynamic-email-in-gmail-becoming-GA.html
https://workspaceupdates.googleblog.com/2019/06/dynamic-email-in-gmail-becoming-GA.html
https://github.com/gjtorikian/html-pipeline/pull/111
https://github.com/gjtorikian/html-pipeline/pull/111
https://github.com/markdown-it/markdown-it/issues/28
https://hackerone.com/hacktivity?querystring=dom%20clobbering
https://hackerone.com/hacktivity?querystring=dom%20clobbering
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=dom+clobbering
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=dom+clobbering
https://terjanq.medium.com/dom-clobbering-techniques-8443547ebe94
https://terjanq.medium.com/dom-clobbering-techniques-8443547ebe94
https://www.blackhat.com/docs/us-15/materials/us-15-Nafeez-Dom-Flow-Untangling-The-DOM-For-More-Easy-Juicy-Bugs.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Nafeez-Dom-Flow-Untangling-The-DOM-For-More-Easy-Juicy-Bugs.pdf
https://html.spec.whatwg.org/multipage/
https://dom.spec.whatwg.org/

[58] WHATWG DOM repository issues. https://github.com/whatwg/dom/
issues.

[59] BrowserStack. https://www.browserstack.com/.
[60] S. H., “How to Update Safari without upgrading MacOS?” 2021,

https://browserhow.com/how-to-update-safari-without-upgrading-
macos/.

[61] Web APIs. https://developer.mozilla.org/en-US/docs/Web/API.
[62] The Window Interface. https://developer.mozilla.org/en-US/docs/We

b/API/Window.
[63] The Document Interface. https://developer.mozilla.org/en-US/docs/

Web/API/Document.
[64] (2021) The HTMLCollection Interface. https://developer.mozilla.org/

en-US/docs/Web/API/HTMLCollection.
[65] The Blink Rendering Engine. https://www.chromium.org/blink/.
[66] H. Charlton, “Should Apple Continue to Ban Rival Browser Engines

on iOS?” 2022, https://www.macrumors.com/2022/02/25/should-
apple-ban-rival-browser-engines/.

[67] The Notification Web API. https://developer.mozilla.org/en-US/docs/
Web/API/notification.

[68] The WebStorage API. https://developer.mozilla.org/en-US/docs/Web/
API/Web Storage API.

[69] S. H. Jensen, P. A. Jonsson, and A. Møller, “Remedying the Eval
that Men Do,” in ISSTA, 2012.

[70] S. Guarnieri and B. Livshits, “GULFSTREAM: Staged Static Analy-
sis For Streaming JavaScript Applications,” in WebApps, 2010.

[71] Puppeteer. https://github.com/puppeteer/puppeteer.
[72] Chrome devtools. https://chromedevtools.github.io/devtools-protocol.
[73] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and

Discovering Vulnerabilities with Code Property Graphs,” in IEEE
S&P, 2014.

[74] Neo4j. https://neo4j.com/.
[75] Cypher Query Language. https://neo4j.com/developer/cypher/.
[76] Rest Parameters. https://developer.mozilla.org/en-US/docs/Web/Java

Script/Reference/Functions/rest parameters.
[77] Spread Operator Syntax. https://developer.mozilla.org/en-US/docs/

Web/JavaScript/Reference/Operators/Spread syntax.
[78] S. Guarnieri and V. B. Livshits, “GATEKEEPER: Mostly Static

Enforcement of Security and Reliability Policies for JavaScript Code,”
in USENIX Security, vol. 10, 2009, pp. 78–85.

[79] The arguments object. https://developer.mozilla.org/en-US/docs/We
b/JavaScript/Reference/Functions/arguments.

[80] DOM-based WebSocket-URL poisoning. https://portswigger.net/web-
security/dom-based/websocket-url-poisoning.

[81] C. Polop, “Cross-site WebSocket hijacking,” 2022, https://book.hac
ktricks.xyz/pentesting-web/cross-site-websocket-hijacking-cswsh.

[82] M. Steffens and B. Stock, “PMForce: Systematically Analyzing
postMessage Handlers at Scale,” in CCS, 2020, pp. 493–505.

[83] Dom-based document-domain manipulation. https://portswigger.net/
web-security/dom-based/document-domain-manipulation.

[84] J. Schwenk, M. Niemietz, and C. Mainka, “Same-Origin Policy:
Evaluation in Modern Browsers,” in USENIX Security, 2017.

[85] T. A. Nideck, “What Are JSON Injections?” 2019, https://www.ac
unetix.com/blog/web-security-zone/what-are-json-injections.

[86] Client-side json injection. https://portswigger.net/kb/issues/00200370
client-side-json-injection-dom-based.

[87] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A symbolic execution framework for JavaScript,” in IEEE S&P, 2010,
pp. 513–528.

[88] C.-A. Staicu and M. Pradel, “Freezing the Web: A Study of ReDoS
Vulnerabilities in JavaScript-based Web Servers,” in USENIX Security,
2018, pp. 361–376.

[89] J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee, “The impact of
regular expression denial of service (redos) in practice: an empirical
study at the ecosystem scale,” in ESEC/FSE, 2018, pp. 246–256.

[90] DOM-based Local File-path Manipulation. https://portswigger.net/
web-security/dom-based/local-file-path-manipulation.

[91] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński,
and W. Joosen, “Tranco: A research-oriented top sites ranking
hardened against manipulation,” in NDSS, 2019.

[92] Google Closure Library HTML Sanitizer. https://github.com/google/
closure-library/blob/master/closure/goog/html/sanitizer/htmlsanitize

r.js.
[93] JS-XSS HTML Sanitizer. https://github.com/leizongmin/js-xss.
[94] Sanitize-HTML Library. https://github.com/apostrophecms/sanitize-

html.
[95] Google Caja Sanitizer. https://code.google.com/archive/p/google-

caja/wikis/JsHtmlSanitizer.wiki.
[96] Insane HTML Sanitizer. https://github.com/bevacqua/insane.
[97] JavaScript Bleach Sanitizer. https://www.npmjs.com/package/bleach.
[98] Angular-sanitize Library. https://www.npmjs.com/package/bleach.
[99] HTML-Purify Library. https://www.npmjs.com/package/html-purify.
[100] Arcgis HTML Sanitizer. https://www.npmjs.com/package/@esri/arcg

is-html-sanitizer.
[101] Python Mozilla Bleach Sanitizer. https://pypi.org/project/bleach/.
[102] LXML Library. https://pypi.org/project/lxml/.
[103] Python HTML-sanitizer Library. https://pypi.org/project/html-

sanitizer/.
[104] HTMLLaundry Library. https://pypi.org/project/htmllaundry/.
[105] Django HTML Sanitizer. https://pypi.org/project/django-html sanitiz

er/.
[106] PHP HTML Purifier. https://packagist.org/packages/ezyang/htmlpuri

fier.
[107] PHP HTML-Sanitizer. https://packagist.org/packages/tgalopin/html-

sanitizer.
[108] Symfony HTML Sanitizer. https://packagist.org/packages/symfony/h

tml-sanitizer.
[109] HTMLawed Library. https://packagist.org/packages/htmlawed/html

awed.
[110] Typo3 HTML Sanitizer. https://packagist.org/packages/typo3/html-

sanitizer.
[111] HTML Encoder of AntiXSS Library. https://docs.microsoft.com/en-

us/dotnet/api/system.web.security.antixss.antixssencoder.htmlencod
e?view=netframework-4.8.

[112] C# HtmlSanitizer. https://www.nuget.org/packages/HtmlSanitizer.
[113] ASP.NET Ajax Control Toolkit. https://www.nuget.org/packages/Aja

xControlToolkit.HtmlEditor.Sanitizer/.
[114] NSoup HTML Parser and Sanitizer for .NET Framework. https:

//www.nuget.org/packages/NSoup/.
[115] HTMLRuleSanitier Library. https://www.nuget.org/packages/Verey

on.Web.HtmlSanitizer.
[116] JSoup: Java HTML Parser. https://github.com/jhy/jsoup.
[117] OWASP Java HTML Sanitizer. https://github.com/OWASP/java-

html-sanitizer.
[118] Java AntiSamy Library. https://github.com/nahsra/antisamy.
[119] HtmlCleaner Library. http://htmlcleaner.sourceforge.net/index.php.
[120] GitHub Octoverse report. https://octoverse.github.com/.
[121] Object Freeze API. https://developer.mozilla.org/en-US/docs/Web/Ja

vaScript/Reference/Global Objects/Object/freeze.
[122] The instanceof Operator. https://developer.mozilla.org/en-US/docs/

Web/JavaScript/Reference/Operators/instanceof.
[123] The typeof Operator. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Operators/typeof.
[124] The globalThis object. https://developer.mozilla.org/en-US/docs/We

b/JavaScript/Reference/Global Objects/globalThis.
[125] The MutationObserver API. https://developer.mozilla.org/en-US/doc

s/Web/API/MutationObserver.
[126] TheThing. https://github.com/SoheilKhodayari/TheThing.
[127] DOM Clobbering browser testing pipeline. https://github.com/Sohei

lKhodayari/DOMClobbering.
[128] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and M. Backes, “Hey,

you have a problem: On the feasibility of large-scale web vulnerability
notification,” in USENIX Security, 2016, pp. 1015–1032.

[129] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy,
S. Savage, and V. Paxson, “You’ve got vulnerability: Exploring
effective vulnerability notifications,” in USENIX Security, 2016.

[130] S. Roth, M. Backes, and B. Stock, “Assessing the impact of script
gadgets on csp at scale,” in ACM Asia CCS, 2020, pp. 420–431.

[131] M. Heiderich, “ToStaticHTML for Everyone! About DOMPurify,
Security in the DOM, and Why We Really Need Both,” 2016.

[132] Boomerang Library. https://developer.akamai.com/tools/boomerang.
[133] (2018) Client-side CSRF. https://www.facebook.com/notes/facebook-

bug-bounty/client-side-csrf/2056804174333798/.

15

https://github.com/whatwg/dom/issues
https://github.com/whatwg/dom/issues
https://www.browserstack.com/
https://browserhow.com/how-to-update-safari-without-upgrading-macos/
https://browserhow.com/how-to-update-safari-without-upgrading-macos/
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection
https://www.chromium.org/blink/
https://www.macrumors.com/2022/02/25/should-apple-ban-rival-browser-engines/
https://www.macrumors.com/2022/02/25/should-apple-ban-rival-browser-engines/
https://developer.mozilla.org/en-US/docs/Web/API/notification
https://developer.mozilla.org/en-US/docs/Web/API/notification
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://github.com/puppeteer/puppeteer
https://chromedevtools.github.io/devtools-protocol
https://neo4j.com/
https://neo4j.com/developer/cypher/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://portswigger.net/web-security/dom-based/websocket-url-poisoning
https://portswigger.net/web-security/dom-based/websocket-url-poisoning
https://book.hacktricks.xyz/pentesting-web/cross-site-websocket-hijacking-cswsh
https://book.hacktricks.xyz/pentesting-web/cross-site-websocket-hijacking-cswsh
https://portswigger.net/web-security/dom-based/document-domain-manipulation
https://portswigger.net/web-security/dom-based/document-domain-manipulation
https://www.acunetix.com/blog/web-security-zone/what-are-json-injections
https://www.acunetix.com/blog/web-security-zone/what-are-json-injections
https://portswigger.net/kb/issues/00200370_client-side-json-injection-dom-based
https://portswigger.net/kb/issues/00200370_client-side-json-injection-dom-based
https://portswigger.net/web-security/dom-based/local-file-path-manipulation
https://portswigger.net/web-security/dom-based/local-file-path-manipulation
https://github.com/google/closure-library/blob/master/closure/goog/html/sanitizer/htmlsanitizer.js
https://github.com/google/closure-library/blob/master/closure/goog/html/sanitizer/htmlsanitizer.js
https://github.com/google/closure-library/blob/master/closure/goog/html/sanitizer/htmlsanitizer.js
https://github.com/leizongmin/js-xss
https://github.com/apostrophecms/sanitize-html
https://github.com/apostrophecms/sanitize-html
https://code.google.com/archive/p/google-caja/wikis/JsHtmlSanitizer.wiki
https://code.google.com/archive/p/google-caja/wikis/JsHtmlSanitizer.wiki
https://github.com/bevacqua/insane
https://www.npmjs.com/package/bleach
https://www.npmjs.com/package/bleach
https://www.npmjs.com/package/html-purify
https://www.npmjs.com/package/@esri/arcgis-html-sanitizer
https://www.npmjs.com/package/@esri/arcgis-html-sanitizer
https://pypi.org/project/bleach/
https://pypi.org/project/lxml/
https://pypi.org/project/html-sanitizer/
https://pypi.org/project/html-sanitizer/
https://pypi.org/project/htmllaundry/
https://pypi.org/project/django-html_sanitizer/
https://pypi.org/project/django-html_sanitizer/
https://packagist.org/packages/ezyang/htmlpurifier
https://packagist.org/packages/ezyang/htmlpurifier
https://packagist.org/packages/tgalopin/html-sanitizer
https://packagist.org/packages/tgalopin/html-sanitizer
https://packagist.org/packages/symfony/html-sanitizer
https://packagist.org/packages/symfony/html-sanitizer
https://packagist.org/packages/htmlawed/htmlawed
https://packagist.org/packages/htmlawed/htmlawed
https://packagist.org/packages/typo3/html-sanitizer
https://packagist.org/packages/typo3/html-sanitizer
https://docs.microsoft.com/en-us/dotnet/api/system.web.security.antixss.antixssencoder.htmlencode?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.web.security.antixss.antixssencoder.htmlencode?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.web.security.antixss.antixssencoder.htmlencode?view=netframework-4.8
https://www.nuget.org/packages/HtmlSanitizer
https://www.nuget.org/packages/AjaxControlToolkit.HtmlEditor.Sanitizer/
https://www.nuget.org/packages/AjaxControlToolkit.HtmlEditor.Sanitizer/
https://www.nuget.org/packages/NSoup/
https://www.nuget.org/packages/NSoup/
https://www.nuget.org/packages/Vereyon.Web.HtmlSanitizer
https://www.nuget.org/packages/Vereyon.Web.HtmlSanitizer
https://github.com/jhy/jsoup
https://github.com/OWASP/java-html-sanitizer
https://github.com/OWASP/java-html-sanitizer
https://github.com/nahsra/antisamy
http://htmlcleaner.sourceforge.net/index.php
https://octoverse.github.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/instanceof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/instanceof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/globalThis
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/globalThis
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://github.com/SoheilKhodayari/TheThing
https://github.com/SoheilKhodayari/DOMClobbering
https://github.com/SoheilKhodayari/DOMClobbering
https://developer.akamai.com/tools/boomerang
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/

Appendix A.
A.1. Case Studies

This section reports on a few manually vetted case studies
of the confirmed attacks. We note that the affected parties
have been promptly informed of the vulnerability, and have
already patched them (see §7).
GitHub. This vulnerability affects the GitHub Shop and orig-
inated when loading the Boomerag JavaScript library [132].
In more details, the code followed the vulnerable pattern G
of Table 6, where a variable called BOOMR was defined in
an inital script that contained a clobberable, invoked native
method, and a second script that used the object property
window.BOOMR.url as the src of a dynamically added
script. Attackers can escalate this vulnerable pattern to client-
side XSS via double clobbering. First, they clobber the
invoked native method, causing a runtime error when the
browser parses the first script. Therefore, the browser stops
parsing the rest of the script and BOOMR becomes undefined.
Then, attackers can clobber window.BOOMR.url and
consequently control the script src by injecting a DOM
Clobbering markup, e.g., <a id=BOOMR
name=url href=malicious.js>. We discovered that
it is possible to inject such non-script markup to the client-
side page leveraging the search functionality and the URL
query parameters, which were reflected back to the page.
Trello. We discovered that Trello uses a global object
property called window.ClickTaleScriptSource
to programmatically load a script named wrScript.
However, this property was clobberable as
ClickTaleScriptSource was an undefined variable
following the vulnerable pattern A of Table 6. Finally, we
found that it is possible to insert a persistent, non-script
markup to overwrite this object property by editing a
comment for a card in Trello boards, which resulted in
arbitrary client-side code execution.
Fandom. We discovered a DOM Clobbering vulner-
ability in Fandom affecting the users’ message wall
that resulted in open redirection. Specifically, the
JavaScript program contained an assignment to the
location.href property of the top-level window, whose
value was tainted with a clobberable object property,
i.e., form.elements.targetUsername.value. At-
tackers can manipulate the value of this property by, e.g., two
nested iframe tags that are named form and elements,
and an additional input element in the nested frame. The
input is named targetUsername, and has a value
containing a malicious URL, which will be set as the window
URL. We found that it is possible to inject non-script markup
in the page in two distinct ways: (i) attackers can insert
persistent payloads using the post functionality in the profile
message wall, and (ii) a URL parameter in the path was
reflected back to the page without extra validation, enabling
transient insertion of clobbering payloads in the page.

A.2. Additional Evaluation Details

Name Î HTML Tags

TS1 a, abbr, acronym, address, applet, area, article, aside, audio, b, base, basefont, bdi,
bdo, bgsound, big, blink, blockquote, br, button, canvas, center, cite, code, com-
mand, content, data, datalist, dd, del, details, dfn, dialog, dir, div, dl, dt, element,
em, embed, fieldset, figcaption, figure, font, footer, form, h1, header, hgroup, hr, i,
iframe, image, img, input, ins, isindex, kbd, keygen, label, legend, li, link, listing,
main, map, mark, marquee, menu, menuitem, meta, meter, multicol, nav, nextid, nobr,
noembed, noframes, noscript, object, ol, optgroup, option, output, p, param, picture,
pre, progress, q, rb, rp, rt, rtc, ruby, s, samp, script, section, select, shadow, slot, small,
source, spacer, span, strike, strong, style, sub, summary, sup, table, template, textarea,
time, title, track, tt, u, ul, var, video, wbr, xmp

TS2 blockquote, br, button, canvas, center, cite, code, command, content, data, datalist,
dd, del, details, dfn, dialog, dir, div, dl, dt, element, em, embed, fieldset, figcaption,
figure, font, footer, form, h1, header, hgroup, hr, i, image, img, input, ins, isindex, kbd,
keygen, label, legend, li, link, listing, main, map, mark, marquee, menu, menuitem,
meta, meter, multicol, nav, nextid, nobr, noembed, noframes, noscript, object, ol,
optgroup, option, output, p, param, picture, plaintext, pre, progress, q, rb, rp, rt, rtc,
ruby, s, samp, script, section, select, shadow, slot, small, source, spacer, span, strike,
strong, style, sub, summary, sup, svg, table, template, textarea, time, title, track, tt, u,
ul, var

TS3 button, fieldset, input, output, select, textarea

TS4 image, img, object

TS5 a, abbr, acronym, address, applet, area

TS6 basefont, bgsound, blink

TS7 noembed, noframes, noscript, script, style, template, textarea, title, xmp

TS8 ins, isindex, kbd, keygen, label, legend, li, link, listing, main, map, mark, marquee,
menu, menuitem, meta, meter, multicol, nav, nextid, nobr, object, ol, optgroup, option,
output, p, param, picture, pre, progress, q, rb, rp, rt, rtc, ruby, s, samp, section, select,
shadow, slot, small, source, spacer, span, strike, strong, sub, summary, sup, svg, table,
time, track, tt, u, ul, var, video, wbr

TS9 fieldset, figcaption, figure, font, footer, form, h1, header, hgroup, hr, i, image

TS10 form, iframe, image, img, script, style, table, template

TS11 caption, col, colgroup, tbody, td, tfoot, th, thead, tr

TS12 p, param, picture, plaintext, pre, progress, q, rb, rp, rt, rtc, ruby, s, samp, script,
section, select, shadow, slot, small, source, spacer, span, strike, strong, style, sub,
summary, sup, table, template, textarea, time, title, track, tt, u, ul, var, video, wbr, xmp,
a, abbr, acronym, address, applet, area, article, aside, audio, b, base, basefont, bdi,
bdo, bgsound, big, blink, blockquote, br, button, canvas, center, cite, code, command,
content, data, datalist, dd, del, details, dfn, dialog, dir, div, dl, dt, element, em, embed,
fieldset, figcaption, figure, font, footer, form, h1, header, hgroup, hr, i

TS13 h1, header, hgroup, hr, i, image, img, input, ins, isindex, kbd, keygen, label, legend,
li, link, listing, main, map, mark, marquee, menu, menuitem, meta, meter, multicol,
nav, nextid, nobr, noembed, noframes, noscript, object, ol, optgroup, option, output, p,
param, picture, plaintext, pre, progress, q, rb, rp, rt, rtc, ruby, s, samp, script, section,
select, shadow, slot, small, source, spacer, span, strike, strong, style, sub, summary,
sup, table, template, textarea, time, title, track, tt, u, ul, var, video, wbr, xmp, a, abbr,
acronym, address, applet, area, article, aside, audio

TS14 form, b, base, basefont, bdi, bdo, bgsound, big, blink, blockquote, br, button, canvas,
center, cite, code, command, content, data, datalist, dd, del, details, dfn, dialog, dir,
div, dl, dt, element, em, embed, fieldset, figcaption, figure, font, footer

TS15 data, datalist, dd, del, details, dfn, dialog, dir, div, dl, dt, element, em, embed, fieldset,
figcaption, figure, font, footer, form, h1, header, hgroup, hr, i, image, img, input, ins,
isindex, kbd, keygen, label, legend, li, link, listing, main, map, mark, marquee, menu,
menuitem, meta, meter, multicol, nav, nextid, nobr, noembed, noframes, noscript,
object, ol, optgroup, option, output, p, param, picture, plaintext, pre, progress, q, rb,
rp, rt, b, base, basefont, bdi, bdo, bgsound, big, blink, blockquote, br, button, canvas,
center, cite, code, command, content, rtc, ruby, s, samp, script, section, select, shadow

TS16 rtc, ruby, s, samp, script, section, select, shadow, slot, small, source, spacer, span,
strike, strong, style, sub, summary, sup, table, template, textarea, time, title, track, tt,
u, ul, var, video, wbr, xmp, a, abbr, acronym, address, applet, area, article, aside, audio,
b, base, basefont, bdi, bdo, bgsound, big, blink, blockquote, br, button, canvas, center,
cite, code, command, content, data, datalist, dd, del, details, dfn, dialog, dir, div, dl, dt,
element, em, embed, fieldset, figcaption, figure, font, footer, form, h1, header, hgroup,
hr, i, image

TS17 br, button, canvas, center, cite, code, command, content, data, datalist, dd, del, details,
dfn, dialog, dir, div, dl, dt, element, em, embed, fieldset, figcaption, figure, font, footer,
form, h1, header, hgroup, hr, i

TS18 address, applet, area, article, aside, audio, b, base, basefont, bdi, bdo, bgsound, big,
blink, blockquote, br, button, canvas, center, cite, code, command, content, data,
datalist, dd, del, details, dfn, dialog, dir

TS19 form, iframe, script, style, template

TS20 image, img, input, noembed, noframes, noscript

TABLE 7: List of HTML tags used in Table 2 that share the same DOM
Clobbering behaviour.

16

Ë Security Threat ! Semantic Type Description Reference ý JavaScript Sink

Client-side Open Redirect WIN LOC WRITE Redirecting the Window URL [36, 37] window.location = T

Websocket Hijacking WEBSOCK URL WRITE Hijacking Websocket Connections [80, 81] new WebSocket(T)

Cookie Manipulation DOC COOKIE WRITE Manipulating Cookie State [1, 5, 82] document.cookie = T

Doc. Domain Manipulation DOC DOMAIN WRITE Bypassing SOP [83, 84] document.domain = T

Client-side JSON Injection JSON PARSE Parsing Untrusted JSON [85–87] JSON.parse(T)

RegEx Injection REGEX BUILD Injecting Regex for ReDoS [88, 89] new RegExp(T)

postMessage Manipulation POST MSG WRITE Manipulating postMessages [82] window.postMessage(T)

Local File Path Manipulation FILE PATH WRITE Manipulating Path of Read Files [90] new FileReader().readAsText(T)

Cross-site Scripting (XSS) CODE LOADING Loading New Scripts [1, 22, 39] script.src = T

CODE EXEC Executing Arbitrary JavaScript [1, 7] script.textContent = T
eval(T)
setTimeout(T)
setInterval(T)
new Function(T)

DOM NODE INJECT Injecting DOM Elements [1, 7, 12, 87] document.write(T)
document.writeln(T)
elm.innerHTML = T
elm.outerHTML = T
elm.insertAdjacentHTML(T)
elm.insertAdjacentElement(T)
elm.replaceChild(T)
elm.append(T)
elm.appendChild(T)

Web Storage Manipulation DOC STORAGE WRITE Manipulating Storage State [1, 5, 82] localStorage.setItem()
sessionStorage.setItem()

Client-side Request Forgery REQ Manipulating Asynchronous Reqs. [32, 133] fetch(T)
XMLHttpRequest.open(T)
asyncRequest(T)
$.ajax(T)

Legend: T= Tainted Variable;

TABLE 8: Summary of primitive JavaScript sinks and semantic types supported by TheThing grouped by the security risk of manipulating the sink object.
The list is obtained by aggregating the client-side JavaScript sinks considered in existing literature.

ý Source ! Semantic Type

S1: variable v CLOB CUSTOM VAR
S4, S5: window.v CLOB WIN CUSTOM VAR
S6: document.v CLOB DOC CUSTOM VAR

S2: property p CLOB NATIVE PROP
S3: window.p CLOB WIN NATIVE PROP
S7: document.p CLOB DOC NATIVE PROP

Legend: Si= case Si in Table 3;

TABLE 9: Summary of DOM Clobbering sources and their semantic types
based on the seven cases of Table 3.

Sanitizer Version Sanitizer Version

Client-side JS Node.js
1. DOMPurify 2.3.4 1. Insane 2.6.2
2. Google Closure Lib. 20211201.0.0 2. Bleach 0.3.0
3. JS-XSS 1.0.10 Bower-angular-sanitize 1.8.2
4. Sanitize-HTML 2.6.1 Yahoo html-purify 1.1.0
5. Google Caja 6015 Arcgis 2.9.0

Python PHP
1. Mozilla Bleach 4.1.0 1. Htmlpurifier 4.14.0
2. LXML 4.7.1 2. Html-sanitizer 1.5.0
3. HTML Sanitizer 1.9.3 3. Symfony HtmlSanitizer 1.0.0
4. Htmllaundry 2.2 4. HTMLawed 1.2
5. Django-html-sanitizer 0.1.5 5. Typo3 Sanitizer 2.0.13

C# Java
1. AntiXssEncoder 4.3.0 1. Jsoup 1.14.3
2. HtmlSanitizer 7.0.473 2. Java-html-sanitizer 20211018.2
3. AJAX Toolkit 20.1.0 3. Antisamy 1.6.4
4. NSoup 0.8.0 4. HtmlCleaner 2.25
5. HtmlRuleSanitizer 1.6.0.1

TABLE 10: The specific versions of HTML sanitizers tested in §6

Graph Queries

Task: Identifying Source Si as in Table 3

Qs1 = {n: n∈ N ∧ n.type == ‘Identifier’ ∧ ∃ v ∈ NP ∧ CLOB(v) ∧ n.name == v }

Qs2 = {n: n ∈ N ∧ ∀ s ∈ N, @ e ∈ E, e == edge(s, n) ∧ e.type == ‘PDG’ ∧ ∃ v, v /∈ NP
∧ e.value == v ∧ (s.type == ‘AssignmentExp’ ∨ s.type == ‘VarDeclaration’) }

Qs3 = {n: n∈ N ∧n.type == ‘MemberExp’ ∧n.object == window ∧∃ v ∈ NP ∧ CLOB(v)
∧ n.property == v }

Qs4 = {n: n∈ N ∧n.type == ‘MemberExp’ ∧n.object == window ∧∃ v /∈ NP ∧ n.property
== v ∧ ∀ s ∈ N, @ e ∈ E, e == edge(s, n) ∧ e.type == ‘PDG’ ∧ e.value == v ∧ (s.type ==
‘AssignmentExp’ ∨ s.type == ‘VarDeclaration’ ∧ s.kind = ‘var’) }

Qs5 = {n: n∈ N ∧n.type == ‘MemberExp’ ∧n.object == window ∧∃ v /∈ NP ∧ n.property
== v ∧ ∃ s ∈ N, e ∈ E, e == edge(s, n) ∧ e.type == ‘PDG’ ∧ e.value == v ∧ (s.type ==
‘AssignmentExp’ ∨ s.type == ‘VarDeclaration’ ∧ s.kind ∈ {‘var’, ‘let’, ‘const’})} ∧ ∃ f ∈
N, f .type == ‘CallExp’ ∧ f .script == s.script ∧ f .name ∈ NP ∧ CLOB(f .name)

Qs6 = {n: n ∈ N ∧ n.type == ‘MemberExp’ ∧ n.object == document ∧ ∃ v /∈ NP ∧
n.property == v }

Qs7 = {n: n ∈ N ∧ n.type == ‘MemberExp’ ∧ n.object == document ∧ ∃ v ∈ NP ∧
CLOB(v) ∧n.property == v }

Task: Identifying Sink Fi as in Table 8

Qsinks = {n: n∈ N ∧ ∃ c∈ N ∧ hasChild(n, c) ∧ c.type == ‘Identifier’ ∧ c ∈ SI }

Task: Identifying Vulnerable Sinks

Qvuln = {n: n ∈ N ∧ n.type == ‘ExpStatement’ ∧ ∃ c1, c2 ∈ N ∧ hasChild(n, c1) ∧
hasChild(n, c2) ∧ c1.semType == ‘SOURCE’ ∧ c2.semType == ‘SINK’ }

Legend: N, E= HPG nodes, edges; SI= sinks in Table 8; NP= native property;
CLOB(v)= v is a clobberable NP according to §4.2.3.

TABLE 11: Excerpt of DOM Clobbering detection queries.

17

.
Chrome Firefox Opera Edge Safari TB SI UC

95
.0

.4
63

8

96
.0

92
.0

.4
51

5

94
.1

.2

95
.0

39
.0

65
.2

.3
38

1

82
.0

.4
22

7

3.
2.

3

95
.0

.1
02

0

96
.0

.1
05

4

95
.0

.1
02

0

15
.1

14
.1

13
.1

14
.7

.1

11
.0

.1

15
.0

.6

13
.3

.8

API � ¿ � ¿ � ¿ � ¿ ¿ ¿ ¿ ¿ � � Total

Method 75 72 77 70 69 77 75 72 77 75 72 77 76 77 77 77 69 75 75 79
Property 246 244 256 240 238 255 246 244 254 246 244 255 255 258 260 255 244 246 251 268

Total 321 316 333 310 307 332 321 316 331 321 316 322 331 335 337 332 313 321 326 347
Legend: TB= Tor Browser; SI= Samsung Internet; UC= UC Browser;

TABLE 12: Count of clobbered native DOM APIs in mobile and desktop browsers. Browsers with similar behaviours are grouped with the same color.

.
Chrome Firefox Opera Edge Safari TB SI UC

95
.0

.4
63

8

96
.0

92
.0

.4
51

5

94
.1

.2

95
.0

39
.0

65
.2

.3
38

1

82
.0

.4
22

7

3.
2.

3

95
.0

.1
02

0

96
.0

.1
05

4

95
.0

.1
02

0

15
.1

14
.1

13
.1

14
.7

.1

11
.0

.1

15
.0

.6

13
.3

.8
API � ¿ � ¿ � ¿ � ¿ ¿ ¿ ¿ ¿ � �

cancelIdleCallback()
clearImmediate()
convertPointFromNodeToPage()
convertPointFromPageToNode()
createImageBitmap()
dump()
getDefaultComputedStyle()
home()
minimize()
openDialog()
print()
requestIdleCallback()
routeEvent()
scrollByLines()
scrollByPages()
setCursor()
setImmediate()
showDirectoryPicker()
showModalDialog()
showOpenFilePicker()
showSaveFilePicker()
sizeToContent()
updateCommands()

caches
controllers
crossOriginIsolated
dialogArguments
directories
fullScreen
mozAnimationStartTime
mozInnerScreenX
mozInnerScreenY
onappinstalled
onauxclick
onbeforeinstallprompt
oncancel
onclose
ondeviceorientationabsolute
ondragdrop
onformdata
ongamepadconnected
ongamepaddisconnected
onloadend
onmessageerror
onpaint
onvrdisplayactivate
onvrdisplayblur
onvrdisplayconnect
onvrdisplaydeactivate
onvrdisplaydisconnect
onvrdisplayfocus
onvrdisplaypointerrestricted
onvrdisplaypointerunrestricted
onvrdisplaypresentchange
pkcs11
scrollMaxX
scrollMaxY

Chrome Firefox Opera Edge Safari TB SI UC

95
.0

.4
63

8

96
.0

92
.0

.4
51

5

94
.1

.2

95
.0

39
.0

65
.2

.3
38

1

82
.0

.4
22

7

3.
2.

3

95
.0

.1
02

0

96
.0

.1
05

4

95
.0

.1
02

0

15
.1

14
.1

13
.1

14
.7

.1

11
.0

.1

15
.0

.6

13
.3

.8

API � ¿ � ¿ � ¿ � ¿ ¿ ¿ ¿ ¿ � �

sidebar
Notification
dataLayer
XDomainRequest
ActiveXObject
attachEvent
EventEmitter
ReportingObserver
chrome
safari
firefoxAccessException
trustedTypes
NaN
SharedArrayBuffer
afterprint
animationcancel
animationend
animationiteration
beforeprint
beforeunload
copy
cut
DOMContentLoaded
error
hashchange
languagechange
load
message
messageerror
offline
online
orientationchange
pagehide
pageshow
paste
popstate
rejectionhandled
Storage
transitioncancel
unhandledrejection
unload
vrdisplayconnect
vrdisplaydisconnect
vrdisplaypresentchange
onanimationcancel
ontouchcancel
ontouchstart
defaultStatus
Touch
TouchEvent
ondevicemotion
ondeviceorientation
ontransitioncancel
speechSynthesis
onselectionchange
MediaSource
onselectstart

Legend: TB= Tor Browser; SI= Samsung Int.; UC= UC Browser; = successfully clobbered; = clobbering fails;

TABLE 13: List of clobbered Window methods and properties in web browsers.

18

	Introduction
	Background
	DOM Clobbering Vulnerability
	Threat Model

	Problem Statement
	Attack Techniques
	Methodology
	Systematization of Known Instances
	Markup Generation and Browser Testing

	Results
	Systematization of Known Instances
	Clobbering Variables and Object Properties
	Clobbering Native APIs

	Detection and Prevalence
	Detection
	Data Collection
	Vulnerability Analysis
	Vulnerability Verification

	Prevalence in the Wild
	Confirming Exploitability of Vulnerabilities

	Defenses
	Evaluation of Existing Countermeasures
	Secure Code Patterns

	Summary and Discussion
	Related Work
	Conclusion
	Appendix A
	Case Studies
	Additional Evaluation Details

