
YURASCANNER: Leveraging LLMs for
Task-driven Web App Scanning

Aleksei Stafeev, Tim Recktenwald, Gianluca De Stefano, Soheil Khodayari, Giancarlo Pellegrino
CISPA Helmholtz Center for Information Security

{aleksei.stafeev, tim.recktenwald, gianluca.de-stefano, soheil.khodayari, pellegrino}@cispa.de

Abstract—Web application scanners are popular and effective
black-box testing tools, automating the detection of vulnerabilities
by exploring and interacting with user interfaces. Despite their ef-
fectiveness, these scanners struggle with discovering deeper states
in modern web applications due to their limited understanding
of workflows. This study addresses this limitation by introducing
YURASCANNER, a task-driven web application scanner that
leverages large-language models (LLMs) to autonomously execute
tasks and workflows.

YURASCANNER operates as a goal-based agent, suggesting
actions to achieve predefined objectives by processing webpages to
extract semantic information. Unlike traditional methods that rely
on user-provided traces, YURASCANNER uses LLMs to bridge
the semantic gap, making it web application-agnostic. Using the
XSS engine of Black Widow, YURASCANNER tests discovered
input points for vulnerabilities, enhancing the scanning process’s
comprehensiveness and accuracy.

We evaluated YURASCANNER on 20 diverse web applications,
focusing on task extraction, execution accuracy, and vulnerability
detection. The results demonstrate YURASCANNER’s superiority
in discovering new attack surfaces and deeper states, significantly
improving vulnerability detection. Notably, YURASCANNER iden-
tified 12 unique zero-day XSS vulnerabilities, compared to three
by Black Widow. This study highlights YURASCANNER’s poten-
tial to revolutionize web application scanning with its automated,
task-driven approach.

I. INTRODUCTION

Web application scanners represent the quintessence of
black-box testing tools as they explore the attack surface of
web applications and detect vulnerabilities in an automated
manner. Starting from a seed webpage, they iteratively search
for forms and URLs by interacting with the user interfaces.
Then, they inject special inputs into these forms and URLs
to search for vulnerabilities. While web scanners have been
proven effective in the detection of web vulnerabilities, they
still perform poorly or even fail in automatically discovering
deeper states, leaving potential vulnerabilities undetected.

One of the main shortcomings of web scanners is their
unawareness of the tasks and workflows that characterize
modern web applications. These workflows require web scan-
ners to understand the sequence of various steps and execute
them in the correct order. For example, a scanner needs to
add products to a shopping cart before proceeding with the
payment. Unfortunately, existing web scanners (e.g., [1]–[3])
rely on basic page navigation strategies, such as breadth-first
and random strategies [4], making it unlikely for a scanner
to execute the correct sequence of actions. Recently, model-
based methods have been proposed to guide crawlers through
workflows. These models can be state machines learned

during crawling (e.g., [5], [6]), user-provided traces that a
crawler can replay as-is (e.g., [7]), or reinforcement learning
techniques that learn general navigation patterns from user
traces (e.g., [8]). Unfortunately, these approaches do not scale
well because models and traces are not easily transferable
across different web applications, and web applications can
contain tens or hundreds of workflows, making their manual
generation challenging. Recently, non-academic approaches
have proposed using large language models (LLMs) to assist
users during interactions with websites, such as Natbot [9].
However, we found that these approaches often fail to complete
web application workflows because their actions are too fine-
grained and decisions are based solely on the current page.
This makes them unsuitable for autonomously exploring a web
application in a task-driven manner.

In this paper, we address the challenge of creating a task-
driven web application scanner capable of executing workflows
in a web application-agnostic manner, and present one of the
first automated tools for this purpose called YURASCANNER.
Our approach models the scanner as a goal-based, rational
agent [10] instead of a reactive agent (i.e., [9]), which, given an
objective (the task) and a history of previous actions, suggests
the next action to bring the scanner closer to its objective.
Instead of building a model to select the next action, we use
LLMs based on the intuition that LLMs are trained on publicly
available documents describing workflows and functionalities
of web applications. We present a method to represent actions,
states, and objectives at a semantic level aligned with these
documents and query an LLM to guide exploration towards the
objectives. To bridge the semantic gap between the real web
application and the LLM, we employ sensors and actuators to
process webpages, extract semantic information, and execute
the proposed actions in a real browser. To demonstrate the
advantages of a task-driven web application scanner in a secu-
rity context, we integrated the vulnerability detection engine
of Black Widow [3] into YURASCANNER to detect cross-
site scripting (XSS) vulnerabilities using the forms discovered
through our task-driven exploration.

We comprehensively evaluated YURASCANNER against
20 real and diverse web applications, focusing on task ex-
traction and execution accuracy, a comprehensive measure-
ment of the attack surface discovered and its characterization,
and an assessment of the vulnerability detection benefits of
our task-driven crawling approach. We compared our results
against state-of-the-art baseline techniques, specifically the
Black Widow scanner, and BFS and Random BFS navigation
strategies, yielding four main takeaways.

First, the task generation process produced 77% valid tasks

(1,818 out of 2,361 tasks). Of these 1,818 tasks, YURA-
SCANNER successfully executed 1,115 (61.3%), completing
667 tasks to the last step and 448 tasks to the last but one
step. The remaining 703 task executions failed primarily due
to misalignments between expected and existing states (75%)
and incorrect actions (25%).

Second, YURASCANNER excels in identifying significant
new attack surfaces despite generally discovering fewer unique
aspects compared to other methods, which have a broader,
less focused approach. Specifically, these new discoveries
constitute a substantial portion: 35.4% (Forms) and 25.7%
(URLs) of the total attack surface discovered jointly by both
YURASCANNER and baseline tools, reflecting an average
increase of 55.19% (Forms) and 35.16% (URLs).

Third, the newly-discovered attack surfaces by YURA-
SCANNER are deeper than those discovered by other tools,
ranging from 41.5% at maximum depths of three steps to
14.3% at depths up to 15 steps. These forms were not
discovered by other tools.

Lastly, our findings demonstrate YURASCANNER’s su-
perior performance in vulnerability detection over Black
Widow. Notably, YURASCANNER and Black Widow found
13 unique, zero-day XSS vulnerabilities across three applica-
tions: Redacted, Moodle, and Leantime, with YURASCANNER
discovering 12 new vulnerabilities compared to the three
vulnerabilities found by Black Widow.

In summary, this paper makes the following contributions:

• We propose one of the first fully automated task-
driven web application scanning techniques, modeled
as a goal-driven agent that can complete multi-step
tasks and follow complex workflows autonomously,
leveraging a large-language model.

• We implemented our technique in a tool called YURA-
SCANNER, which we evaluated against 20 real and
diverse web applications.

• We comprehensively assessed the task generation and
execution with an extensive manual review of all
2,361 tasks generated on ten randomly selected web
applications.

• We comprehensively measured and characterized the
new attack surface discovered by YURASCANNER
and compared it to three baseline approaches (Black
Widow, BFS, and Random BFS) across ten applica-
tions.

• We demonstrated how the new attack surface benefits
vulnerability detection by comparing YURASCANNER
with Black Widow, identifying 13 new zero-day XSS
vulnerabilities, with YURASCANNER uncovering 12
vulnerabilities compared to the three found by Black
Widow.

II. BACKGROUND

In this section, we first introduce web application scanners
and how they operate in Section II-A, and then we describe
the challenges they encounter in Section II-B.

1
2
3

4

5
6

Fig. 1: Overview of a real XSS vulnerability we discovered in
Redacted.

A. Web Scanners Architecture

Web scanners [4], [11] are dynamic security testing tools
that identify vulnerabilities within web applications by exam-
ining them during runtime. These tools typically have two
components: (i) a web crawler that navigates through web-
pages, interacting with different elements such as links, forms,
and buttons, with the overall goal of identifying all webpages
and their input points, such as forms, request endpoints and
their parameters; and (ii) an attack module that tests the
discovered endpoints and forms using a dictionary of attack
inputs, monitoring the application’s responses to identify pro-
gram executions that trigger vulnerabilities. Contrary to static
analysis methods, which detect vulnerabilities by analyzing
the source code without running it, security scanners identify
vulnerabilities that only manifest during program execution,
resulting in little-to-no false positives and a PoC exploitation
input.

B. Crawling is a Key Challenge

Existing web scanners employ workflow-agnostic crawling
algorithms [4], where the next action is not selected based on
the application logic of the visited pages. For example, state-
of-the-art security scanners like Black Widow [3] use a ran-
domized BFS approach, which selects the next action randomly
from the available options. Another popular example includes
crawlers, such as Arachni [12], ZAP [13], and w3af [14], that
use a BFS approach by storing new URLs in a queue with a
first-in-first-out (FIFO) policy. These strategies seldom result
in the appropriate sequence of steps needed for the crawler to
reach deeper application states.

Consider, for example, the web UI of Redacted in Fig-
ure 1 and the steps to create a coupon that YURASCANNER
discovered to suffer from an XSS vulnerability. To identify
the vulnerability, a crawler needs to execute six steps: clicking

2

through the Tools link (step 1), the Entities link (step 2),
the Entity Management link (step 3), the Create button
(step 4), filling out the form (step 5), and finally clicking the
Save button (step 6). The input field Parameter B (step
5) is neither server-side validated nor sanitized, resulting in an
XSS vulnerability. Traditional security scanners cannot detect
this vulnerability because their crawlers cannot perform these
six steps in the correct order, thus failing to reach and test this
field.

III. PROBLEM STATEMENT

In this paper, we tackle the challenge of handling multi-
step tasks and complex workflows in web applications, with
the overarching goal of studying if such task-driven crawling
can identify unknown security vulnerabilities. Specifically, we
answer the following research questions:

RQ1: Automated Extraction of Tasks. How can we identify a
comprehensive list of tasks and workflows present in a given
web application? The first part of our study aims to answer
this RQ. We develop a technique to extract relevant workflows
starting from a single seed URL and performing a shallow
crawl to gather primary webpages of the application, extracting
text content including menus, links, and buttons.

We then process this content using LLMs to understand the
semantic functionalities offered by the application. Finally, we
organize the extracted functionalities into a catalog of tasks
that a web agent can perform in subsequent stages.

RQ2: Automated Execution of Tasks. Given a task, how can
we visit a web application and perform the task automatically?
Current crawling techniques often struggle to reach deep appli-
cation states that require complex interactions, such as multi-
step forms and nested functionalities like checkout processes
in shopping cart applications.

We address this problem by treating the crawler as a
goal-driven agent that performs actions based on the current
state and past states. Specifically, we leverage the advanced
semantic understanding capabilities of LLMs, using one-shot
prompting with history, to identify which action to perform
next in a given workflow and webpage, ultimately interacting
with the application in a more human-like manner. The key
insight of our approach is that LLMs like GPT-4 are trained on
documentation files of a plethora of web applications, thereby
they likely possess a foundational knowledge of common
application functionalities and how they are structured and
operate, which enhances their ability to accurately interpret
and navigate complex workflows.

RQ3: Attack Surface Coverage. What are the impacts of
task-driven crawling on attack surface coverage? In this RQ,
we aim to quantify improvements or implications in attack sur-
face coverage offered by a task-driven scanner by comparing
it to state-of-the-art scanners like Black Widow [3]. Similarly
to prior work [2]–[4], we use common coverage metrics, such
as URLs and forms, analyzing the unique and shared attack
surface coverage offered by each approach. Overall, we show
that our approach increases the coverage of web scanners
in areas that are hard to reach, including deep and complex
application states, leading to more comprehensive testing.

RQ4: Characterization of the Attack Surface. How does
the discovered attack surface correlate with the depth and com-
plexity of application states during task execution? While RQ3
measures the size of the attack surface, this RQ investigates
how the discovered attack surface correlates with the ability to
explore deeper web application states. Specifically, we aim to
understand how much of the attack surface is uncovered as the
steps of a task are executed, where state-sensitive operations
are located, and how accessible they are to security tests. By
analyzing the complexity of the tasks our scanner completes
and considering the number of intermediate steps taken, we can
analyze the effort required to uncover vulnerabilities located in
the hard-to-reach attack surface, which often requires specific
conditions or user interactions to be exposed.

RQ5: Vulnerability Detection. Is our task-driven exploration
approach helpful for vulnerability detection? In this RQ, we
want to determine whether our approach can uncover new
vulnerabilities that traditional security scanners might miss. By
enabling the web agent to navigate deep application states, we
hypothesize that it will identify security flaws in areas typically
overlooked by conventional scanners, such as insecure pay-
ment handling in e-commerce checkouts or insufficient input
validation in multi-step forms. In addition, understanding the
context in which web elements operate is crucial for accurate
vulnerability detection. For instance, identifying whether a text
input field is part of a form or a search box can significantly
influence the type of security tests performed. Current tools
often lack the semantic understanding needed to accurately
interpret and interact with web elements. By comparing the
results of our task-driven scanning with traditional methods,
we aim to demonstrate its efficacy in providing more com-
prehensive security assessments and uncovering previously
unknown vulnerabilities.

IV. YURASCANNER

This section presents YURASCANNER, and the three main
components, i.e., the way YURASCANNER executes a given
task (Section IV-A), the way YURASCANNER gathers potential
tasks of a given application (Section IV-B), and the way
security testing can be interwoven with YURASCANNER’s nav-
igation strategy (Section IV-C). Figure 2 shows the overview
of our approach.

A. Task Execution

This section presents our approach when executing a given
task t. We start presenting the main design decisions and the
overview of our approach (Section IV-A1). Then, we review
each component of our architecture (Sections IV-A2 to IV-A4).

1) Design Decisions and Approach Overview: Executing
a task on a web application means correctly selecting the
sequence of UI actions, e.g., mouse clicks or form submissions.
Each action will bring the scanner closer to completing the task
t. This problem can be conveniently modeled as a rational,
goal-based agent [10]. However, implementing a rational goal-
based agent requires addressing two key challenges: (1) How
are decisions taken? and (2) What is the right abstraction level
for an agent?.

Design Decisions — Prior work in web exploration has
proposed reinforcement learning (RL) approaches to create

3

Web	Apps

Task	Extraction Task	Execution	 Vulnerability	Scanning

Tasks Exploits

Webpages

Task	Prompts	

LLM

Tasks

Process

Attack	
Payloads

URLs

Forms

Dynamic	Testing

Fig. 2: Overview of YURASCANNER.

Sensors

Actuators

Page abstraction
abs(p)

Task
Page p

Click on element

Submit a form

StopMemory

Next action

abs(a)

Actions
Mapping

The Bridge

Action a

abs(p)
abs(a)history(p)

Fig. 3: Design of the task-driven crawler component of YURA-
SCANNER modeled as a rational, goal-based agent.

such agents where they can determine the next action based
on the current and past states. One line of work proposed
deriving a state-action mapping through a trial-and-error learn-
ing strategy and an appropriate reward function, e.g., [6].
Unfortunately, these approaches result in application-specific
or workflow-specific navigation strategies that do not transfer.
Another line of work proposed using user-provided examples
(state-action mappings extracted from user-generated click
streams) to indicate possible actions to an agent, e.g., [8].
Unfortunately, these examples are hardly available in prac-
tice, rendering these approaches inadequate for our purposes.
As an alternative, examples may be extracted from publicly
available documents, such as user manuals and developer
documentation, describing the expected sequence of actions.
Unfortunately, these documents are written in natural language
and the extraction of actions may be impractical.

Our approach is based on the intuition that if we could
represent actions, states, and objectives at a semantic level
closer to the descriptions of these documents, we could use
a language model to predict the next action as the next most
probable sequence of tokens. In addition, as documentation
about web applications and their workflows are publicly avail-
able, current large-language models may have been already
trained on them, sparing us from running expensive operations
such as model training or fine-tuning. To further support our
intuition, a recent GitHub project showed the viability of
controlling a browser through an LLM, i.e., Natbot [9], to assist
users in navigating webpages. However, we verified that Natbot
hardly completes web application workflows because (i) the
actions are too tailored for browser interaction (e.g., scroll up
and down) and (ii) the model suffers from the endless loop
crawling problem, making this approach unfit to autonomously
explore in a task-driven manner a web application. Accord-
ingly, we revisited the template of Natbot and performed addi-

tional experiments using OpenAI GPT-4, considering different
abstraction levels when integrating pages and actions in the
LLM prompt, e.g., removing unnecessary tags, keeping textual
descriptions of actions (e.g., anchors and forms), introducing
the concept of memory, and engineering the prompt to keep the
model focussed throughout the execution. Our results showed
the viability of this approach. We discuss the technical details
of our choices in the rest of this section.

Overview — Figure 3 shows the high-level architecture
of the crawler component of YURASCANNER. We model it
as an agent with three main modules. The Bridge is the
module that, given an appropriate description of the task, the
current state (an abstract page), and, if any, previously visited
pages, proposes the next action among the ones available on
the current abstract page. The Sensors module is responsible
for analyzing the current page through a browser instance
(e.g., Puppeteer) and creating an abstract page containing the
available actions. The Actuators module is responsible for
executing the action selected by the Bridge. Actuators are
connected to the same browser instance as the sensors and
can perform actions such as clicking on an HTML element or
filling out and submitting a form.

Given a task t, the three modules sensors, the bridge, and
actuators, are iteratively executed whenever the agent visits
one page and until the bridge issues a stop action. Below, we
present each module in that order.

2) Sensors: As soon as the browser loads a new page,
whether it is the initial page or a new page after the actuators
perform an action, the sensors take a snapshot of the rendered
DOM page p and generate a simplified page abs(p) retaining
the semantics of the available actions in p.

Actions — The module identifies all HTML elements a
user interacts with when navigating a page. First, it gathers all
anchor tags, buttons, inputs of type “button” or “submit,” and
elements containing the onclick attribute using CSS query
selectors. However, modern web applications increasingly rely
on event handlers attached to HTML elements, which would
be missed by only considering a limited set of static HTML
clickables. Thus, we opted to reuse the event handler collection
scripts by jÄk [2] and Black Widow [3], which rely on
JavaScript function hooking of the event registration APIs of
the HTMLElement object. We modified the function hooking
routine so that we collect the HTML element where the handler
is registered. Finally, we identify all HTML forms via CSS
selectors.

4

The collected HTML elements may contain items that are
not displayed, such as those with visibility set to false, or
elements not visible due to being occluded by other HTML
elements, e.g., those with a low z-index value. These elements
are not relevant to the logic of the workflow and may introduce
noise when processed by the bridge. Accordingly, we remove
them from the list. We also remove elements that either have
an empty or overly large textual representation. An empty label
does not allow the bridge to infer any information about an
element’s functionality, therefore, the corresponding element
cannot be used meaningfully. On the other hand, overly long
strings have to be omitted in order to stay within the token
limit of the bridge.

Action Mapping — The output of the previous step is a list
of JavaScript HTMLElement instances, one for each HTML
tag representing an action. We associate each object with a
unique per-page identifier, which is an incremental integer.
The mapping object-ID is stored in the Actions Mapping. This
mapping is later used by the actuators to re-identify the HTML
element starting from its ID.

Semantics — Next, we identify text strings that can capture
the semantics of the actions implemented via these HTML
elements. We do this by searching for the first non-empty
strings in tag attributes and properties in the following order:
accessibility attributes (e.g., the aria-label attribute), at-
tributes with advisory information about an element (e.g., the
title attribute), the text contained within an HTML element
(e.g., the innerText property), and the displayed default
attribute of tags (e.g., the value attribute).

We handle form elements similarly by querying a subset of
attributes and inserting them into a generic template. First, we
include the name attribute, which might convey the purpose
of the form. If the name is undefined, we instead use the id
value as a fallback. We also keep the original action and
method attributes intact. The naming scheme of the endpoint
may provide additional context on the form’s intended use
(e.g., action="/advanced_search.php"), whereas the
HTTP method indicates the likeliness of the request being
state-changing.

The process of eliminating any other attributes of an
element or form keeps the textual representation concise and
reduces the amount of information that has to be processed by
the bridge.

Abstract Action and Page — For each action a, we
create an abstract action abs(a), which is an HTML-like
representation of the original tag. This abstract action contains
the same HTML tag name, the unique identifier set as the id
attribute, and the semantic string. The abstract page is the URL
of the page, the title of the HTML page, and the list of the
abstract actions.

3) The Bridge: The bridge is responsible for the decision-
making at each step of a task execution. The bridge uses an
LLM to predict the next action. This prediction is made using
the prompt shown in Figure 4, which we engineered using
a one-shot [15] prompting technique and persona assignment
[16] to increase focus and task compliance.

We divide the prompt into three sections. In the first
section, we assign the model a persona, i.e., “You are Yura,

an agent controlling a web browser,” to improve instruction
compliance. This section includes the task instructions the
model is expected to execute, the content of the abstract
page (i.e., URL, title, and HTML-like actions), and the types
of commands the model can issue, such as “click” or “fill
and submit a form”, along with the ID of the action. If the
model completes the task or is unable to continue, it can issue
a special command called “stop”, which will halt the task
execution.

The second section of the prompt contains one example
of an interaction, including an example of an abstract page,
previous actions, and an appropriate next action. To minimize
syntactically incorrect commands, we expanded this section
with a reminder of the possible command types, i.e., click, fill
and submit, or stop. The third part of the prompt is the actual
query for the LLM, which includes the current abstract page
and the previous actions (retrieved from the local memory).
We observed that the model tends to lose focus after issuing
a few consecutive commands. Accordingly, we start the third
section with a reminder about the model’s persona and its role,
i.e., “Remember, you are Yura, an agent controlling a web
browser.”

After the model selects a command and the ID, the bridge
stores the selected action and page in the local memory.
We empirically tested on a few examples that a history of
six previous actions provides an adequate balance between
performance and accuracy.

4) Actuators: The actuators are responsible for executing
the abstract action selected by the bridge on the browser
instance. Below, we present how the actuators operate.

STOP — If the command is STOP, the actuator halts the
execution of the current task. As a result, a new task is selected
and a new task execution loop starts.

CLICK x — If the next action is CLICK x, the actuator
checks if the identifier x is associated with a concrete click-
able in the action mapping and retrieves the HTMLElement
JavaScript object associated with that action. Then, it fires a
click event on that HTML element by invoking the click()
function of the Puppeteer API. Anchors may have set the
target attribute, which instructs the browser where to dis-
play the linked page, e.g., in a new tab (_blank) or on the
current page (_top). Opening new tabs complicates the man-
agement of headless browsers as each tab needs to be tracked
and managed separately (i.e., lifecycle management and error
handling), therefore we override the target attribute and
replace it with _self, which instructs the browser to reuse
the current context.

After firing a click event, YURASCANNER waits for five
seconds, allowing sufficient time for the browser to execute the
JavaScript handler and, in the case of a top-level navigation
event, to load the necessary resources to render the page when
the web application under test runs on the same machine as
YURASCANNER. However, the parameter is configurable and
users can adjust it to account for network delays. After that,
the sensors continue the execution of the task by creating an
abstract page of the new page.

FILL & SUBMIT FORM x — A form submission
encompasses different actions, i.e., filling each input field with

5

You are Yura, an agent controlling a web ←↩
browser. For each step, you are given the ←↩
following information:
1. a simplified description of what’s visible ←↩
in the browser
2. the URL of the current page
3. the title of the current page
4. the last steps that you completed
5. the current task to achieve

You can issue these commands:
CLICK X - click on an element with id X.
FILL & SUBMIT FORM X - fill and submit the ←↩
form with id X.
STOP - stop when you think you cannot proceed ←↩
further, e.g., a functionality is missing

The current browser content is provided in a ←↩
simplified HTML-like syntax. Clickable elements ←↩
such as links and buttons are represented like ←↩
this:

<button id=0>Cancel</button>
Sign in

Forms are provided in a similar manner:
<form id=2 name="search" action="search/" [...]>

The last line of every prompt is as follows:
YOUR COMMAND: (CLICK {id} / FILL & SUBMIT ←↩
FORM {id} / STOP)

Whenever you see this string, issue the command ←↩
that will get you the closest to achieving the ←↩
current task based on the given browser ←↩
information. Only give one single command per ←↩
prompt. For example, you might issue the ←↩
command "CLICK 0" to click on a shopping cart ←↩
button with id=0 or ’FILL & SUBMIT FORM 3’ to ←↩
let another module fill and submit the form ←↩
element with id=3. If you think the current ←↩
task is finished or the task is impossible to ←↩
achieve, you are expected to issue the STOP ←↩
command.

THIS IS AN EXAMPLE

Current browser content:
{example_current_state}
Task: {example_task_descr}
Last completed steps: {example_last_steps}
Your command: {example_next_command}

Remember, you are Yura, an agent controlling a ←↩
web browser.

Current browser content:
{current_state}
Task: {task_descr}
Last completed steps: {last_steps}
Your command:

Fig. 4: A simplified template showing the three main parts
of the LLM prompt: the initial part is the preamble with the
instructions, an example of input and expected out, and the
current input.

You are FormGPT, which is an agent for ←↩
automatically filling out forms on a web page.
As an input, you are given a form in HTML ←↩
representation. Your task is to fill out the ←↩
form with fitting values.

You can issue this command multiple times (each ←↩
command in a new line):
TYPE X "text" - type the provided text into the ←↩
input with id X.

Here is an example:
FORM TO FILL OUT:
{example_form}
YOUR LIST OF COMMANDS: {example_commands}

The actual form follows now. Please provide ←↩
your list of commands as an answer.
FORM TO FILL OUT:
{current_form}
YOUR LIST OF COMMANDS:

Fig. 5: A template showing the form module LLM prompt.
The overall structure is similar to the bridge LLM prompt.

a correct value and then submitting the form. We envisioned
two possible strategies to handle forms. The first one requires
the bridge to issue fine-grained commands such as FILL
FIELD x and SUBMIT FORM. While these form-specific
commands work well, they overload the LLM prompt with
additional task instructions, decreasing LLM compliance with
our workflow instructions and reducing the task completion
rate. The second strategy splits the instructions and respon-
sibilities between the bridge and the actuators. The bridge is
responsible for making a high-level decision about the next
action, i.e., FILL & SUBMIT FORM x. The actuator is then
responsible for concretizing the action, i.e., filling the input
fields and submitting the form. Our preliminary evaluation
showed that the second strategy keeps the bridge more focused,
increasing the number of completed tasks.

More specifically, whenever the bridge issues a fill and
submit command, the actuator submits a prompt to the LLM.
We design the prompt as a one-shot prompt (providing an
example of a form with the desired output). A simplified
version of our prompt is shown in Figure 5. Forms can also
include fields other than text input boxes such as drop-down
selections (e.g., country) and checkboxes (e.g., accept terms
and conditions), which are clickables. When expanding the
action space to fill forms with click actions, we observed that
the LLM did not always confidently handle them correctly.
Accordingly, we do not provide these fields to the LLM
but handle them algorithmically. For checkboxes and radio
elements, we click on all unchecked entries. For drop-down
selections, we choose the second entry in case there is more
than one possible option to avoid invalid default selections
such as “Please select a country”, which is commonly found
as the first element of drop-down menus.

B. Tasks Catalog Generation

6

Use the following list of button labels on the ←↩
website to generate a list of tasks to complete ←↩
on the website. Adding items, Editing items ←↩
and, finally, Deleting items. Keep tasks simple ←↩
and straight to point. Like, "Add a product", ←↩
"Send E-mail", "Delete a comment".

{page}
The list of tasks:

Fig. 6: A template showing the task generation approach.

YURASCANNER takes as input a catalog of tasks and
executes each task t as described in Section IV-A. When the
bridge issues a STOP command, YURASCANNER fetches the
next task and executes it. YURASCANNER stops when there
are no more tasks in the list.

In general, a user can manually provide a list of tasks
and feed it to YURASCANNER. However, in this paper, we
intend to explore the possibility of generating such a list
automatically. An ideal list of tasks should cover all workflows
of a web application. Unfortunately, such a complete list does
not exist in practice. One approach is to manually enumerate
the workflows by identifying the entities handled by the web
application, e.g., products, customers, and wiki pages, and the
possible operations on them, e.g., create, delete, and modify.
This approach may be impractical and may not scale to other
web applications.

In this paper, we propose an automated approach. We start
from the seed URL of the web application under test and
perform a shallow crawl of depth one to gather the primary
webpages of the application, extracting text content including
menus, links, and buttons. We use the sensors module to locate
interactable HTML elements and keep the elements that have
not appeared on previous pages to minimize the chance of
generating duplicate tasks.

We then process this content using an LLM to understand
the semantic functionalities offered by the application and
suggest a list of tasks. We model a task as an imperative
English sentence composed of a verb, e.g., “Create,” and the
verb’s direct object, e.g., “a new user account.” Recognizing
that certain tasks may have dependencies (e.g., a delete or edit
operation can only be executed after creating an object), we
ask the LLM to sort these tasks based on basic CRUD (Create,
Read, Update, Delete) operations. This structured approach en-
sures that YURASCANNER can navigate and interact with the
application logically and efficiently, adhering to the inherent
dependencies between tasks. Figure 6 shows the prompt we
used for the generation.

C. Vulnerability Testing

To showcase the benefits of a task-driven web application
scanner, we integrated an XSS engine with YURASCANNER.
Instead of creating a new one, we selected an engine from
recent works, i.e., the XSS engine of Black Widow [3]. The
XSS engine uses a database of XSS payloads that call the

oracle function xss(id) where the ID is unique for each
injection.

The engine has two operational modes, i.e., safe and
aggressive, and they are used as follows. For each form and
for each payload, the XSS engine embeds a script that defines
the oracle JavaScript function xss(id). Then, it generates a
unique ID, and injects the payload with the ID in all “safe”
fields, i.e., text, text area, password, and email fields, then
submits the form. If the injections are unsuccessful (the oracle
function has not been executed), it switches to the aggressive
mode where it injects the payload in other input fields, i.e.,
hidden fields, radio buttons, checkboxes, select fields, and
upload file fields.

We combine this XSS engine with YURASCANNER as
follows. First, at each iteration of the task execution (see
Section IV-A), we log the URLs of web pages containing
forms, the position of the forms in the pages, and the sequence
of concrete actions the actuators executed to reach that URL.
After the task execution, we loop over all forms. For each of
them, we start from the seed URL and repeat all the concrete
actions until we reach the form. Then, we run the XSS engine
of Black Widow.

V. EVALUATION

This section presents the evaluation of our approach, ad-
dressing research questions RQ2-5. First, we address RQ2,
where we verify the accuracy of our approach to correctly gen-
erate and execute tasks (Section V-C). Then, we address RQ3,
looking at the attack surface increase when using our task-
driven crawling approach, using different metrics to measure
the newly discovered attack surface (Section V-D). Then, we
address RQ4, looking at the depth of this attack surface, pro-
viding a characterization of the surface that YURASCANNER
can now discover (Section V-E). Finally, we address RQ5,
evaluating the impact of our task-driven exploration strategy in
detecting vulnerabilities in these in-depth states (Section V-F).

We answer these four questions by using a testbed of real-
size, modern web applications and compare our results against
the results of state-of-the-art tools and techniques.

A. Implementation of YURASCANNER

We implemented YURASCANNER in JavaScript (Node.js).
YURASCANNER takes as input the URL of the web application
under test. Optionally, it can also take a single task or a list
of tasks as input. If no task is provided, YURASCANNER
generates a catalog of tasks as presented in Section IV-B.

LLM Interface — YURASCANNER interacts with an
LLM through the OpenAI SDK. By changing the base_url
configuration parameter of the SDK, YURASCANNER can also
use other open-source models. LLM APIs compatible with the
OpenAI API include the Fastchat API [17]1, which enabled
us to support open-source models like the Llama models
using the VLLM2 backend. When selecting the model, we
considered GPT-4, a closed-source model, and three state-of-
the-art open-source models, i.e., Llama3-8B [18], Gemma2-
9B, and Gemma2-27B [19].

1https://github.com/lm-sys/FastChat
2https://github.com/vllm-project/vllm

7

We evaluated YURASCANNER with these four models
against Redacted and compared the success rate of the exe-
cution of 20 randomly selected tasks. GPT-4 had the highest
success rate making it the best choice.

Debug Interface — Debugging a task-driven scanner is not
trivial due to the stochastic behavior introduced by a model.
YURASCANNER aids users with two main debug features.
First, YURASCANNER can save screenshots of the rendered
web pages on disk during the task execution phase. These
screenshots are augmented with color-coded bounding boxes
to show the actions identified by the sensors and the next
action that the bridge intended to execute. Additionally, we
superimpose the name of the task on the screenshot to provide
full awareness to the user about the objective YURASCANNER
had when reviewing them. This debug interface is fundamental
in helping the user to evaluate the task execution capabilities.
Furthermore, YURASCANNER supports a debug mode in the
LLM interface, in which the model is replaced by the user
through an interactive console. This interface helps evaluate
the behavior of the sensors and actuators.

Security Tests — We integrated the XSS detection engine
of Black Widow with the task-driven strategy of YURA-
SCANNER as presented in Section IV-C.

B. Experiment Setup

We now review the configuration of our testbed, tools, and
experiments.

1) Web Applications: We conducted the evaluation of this
paper against real-size, modern web applications. We started
with the applications selected in Black Widow [3] and re-
moved those that are no longer updated (e.g., WackoPicko and
SCARF). Then, we selected other applications from online
catalogs of containerized applications. We used the Bitnami
Application Catalog [20], Elestio Application Catalog [21],
and DockerHub’s Popular CMS Containers [22]. We selected
web applications from a diverse set of categories. In total, we
collected the 21 web applications shown in Table I. However,
during the execution of the experiments, YURASCANNER
failed when executing tasks on WordPress. The inspection of
the logs revealed that WordPress included the entire documen-
tation of the used theme in an input field. That caused the
prompt to reach the maximum size allowed by the LLM, thus
receiving 400 error codes from the LLM API. Accordingly,
we decided to discard WordPress from our experiments.

We divided our testbed into two distinct sets. The first set
contains ten randomly selected web applications that we will
use to validate manually the success rates and errors in the
task execution phase of our tool (i.e., TE dataset). The second
set contains all web applications (i.e., the TE+VD dataset) that
we will use in the vulnerability detection phase.

2) Tools: We also conduct a comparative evaluation of
YURASCANNER against state-of-the-art tools. Prior work [3]
showed that Black Widow performed better than other scan-
ners (academic, open source, and industrial ones) such as
Arachni [12], EotS [5], jÄk [2], Skipfish [23], w3af [14],
and ZAP [13]. An explanation of these performances has
been suggested by recent work, showing that one of the best-
performing strategies is randomized breadth-first search, as

Dataset Name Version Category

TE+VD Redacted Redacted Redacted
TE+VD GitLab 16.11.2-ce.0 VCS
TE+VD OpenCart 4.0.2-3 eCommerce
TE+VD Redmine 5.1.2 Bug tracker
TE+VD Dolibarr 19.0.2 CRM
TE+VD Moodle 4.4.0 LMS
TE+VD MediaWiki 1.41.1 Wiki
TE+VD OwnCloud 10.14.0 Media sharing
TE+VD LimeSurvey 6.5.3 Polls
TE+VD phpBB 3.3.11 Forum

VD NextCloud 29.0.1 Media sharing
VD Joomla 5.1.1 CMS
VD Leantime 3.1.4 Projects
VD EspoCRM 8.2.5 CRM
VD iTop 3.1.1 IT
VD MintHCM 4.0.4 HCM
VD Mautic 5.0.4 Marketing
VD GLPI 10.0.15 Assets
VD Silverpeas 6.3.5 Web Portal
VD Monica 4.1.2 CMS

WordPress 6.5.3 CMS

TABLE I: Web Applications.

implemented by Black Widow, followed by vanilla breadth-
first search, as implemented by many scanners. Based on these
results, we decided to compare our tools against Black Widow
as implemented in [3], for both coverage and detection, as well
as against the BSF and Rand. BFS implementations in [4], for
the coverage only.

3) Experiments Environment: We bootstrapped the web
applications listed in Table I as Docker [24] containers in
our server. We also deployed the tools in Section V-B2 and
YURASCANNER as Docker containers. We configured the web
application and tool containers to be on the same virtual
network. At the end of each tool run, we reset the state of
the web application to avoid interference between runs. We
run each scanner with a maximum time limit of four hours.

To ensure fairness against the evaluated tools, we han-
dled login and registration separately in our experiments.
We supplied all tools, including YURASCANNER, with either
credentials or valid session cookies and manually scripted the
sequence of actions to authenticate in each app.

C. RQ2: Execution of Tasks

Methodology — The first experiment we conducted aimed
to precisely measure the accuracy of generating and executing
tasks against the entire VE dataset (ten web applications). We
assessed accuracy by manually reviewing all task executions
by reviewing the augmented screenshots created by YURA-
SCANNER when running in debug mode. Two co-authors
reviewed the screenshots, each covering the tasks of five web
applications. They then cross-validated each other’s work on
a random sample of tasks. When labeling unclear cases, the
reviewers reached a consensus through discussion; the final
random sampling cross-validation showed no disagreements
in labeling decisions.

Reviewing a task execution required evaluating between
one to fifteen screenshots (the maximum length of a task
execution) per task. For each task, the reviewer first determined
if the task was a valid task for the web application under

8

App Success Partial Failed Total

M
is

si
ng

st
at

e

D
ev

ia
te

d

N
o

ac
tio

n

Redacted 76 51 8 27 58 220
OpenCart 50 45 15 4 2 116
GitLab 73 31 77 0 2 183
Moodle 54 42 38 6 3 143
MediaWiki 63 26 18 30 59 196
OwnCloud 30 18 31 25 22 126
phpBB 99 79 20 28 20 246
LimeSurvey 30 38 4 9 35 116
Dolibarr 75 78 24 21 11 209
RedMine 117 40 52 22 32 263

Total 667 448 287 172 244 1,818

TABLE II: Task execution classification.

test. Then, for all valid tasks, they verified whether the task
was completed successfully (all steps were correctly executed),
partially completed (all steps except the last one were executed
correctly), or failed. When the task execution was marked as
failed, the reviewer determined the reason for the error. We
distinguished three types of errors:

• Missing state — The current state of the web appli-
cation makes it impossible to execute the task unless
some additional action is executed first. For example,
the task Edit a product cannot be executed with an
empty product list; the task Add a product should be
executed successfully first.

• Deviated — The steps executed by the tool did not
reach the target functionality of the website. For
example, given a task Add a new user to user roles,
the scanner tried to create a new role instead of adding
a user to an existing one.

• No action — The only action issued by the tool was
the STOP command.

Results — In total, the task generation produced 2,361
tasks. The manual review of these tasks found that 543 were
invalid, meaning the functionality does not exist in the web
application under test. For example, Get detailed information
about membership or subscription plans is an invalid task for
MediaWiki. Invalid task generation mainly occurred on the
pages with ambiguous or insufficient context, e.g., from the
login page, which only had the Login button. The MediaWiki
task was generated from the page with a link to Privacy Policy
page.

The review of the remaining 1,818 tasks shows that 1,115
tasks (about 61.3% of the valid tasks) were completely (667)
or partially (448) executed (YURASCANNER reached the target
functionality). The remaining 703 task executions failed. When
examining the reasons for failure, the two most dominant errors
(covering 75% of the total errors) were missing state (i.e.,
the LLM failed to either ensure the correct order of the tasks
or establish a state with the other task) and no action (e.g.,
YURASCANNER issued a STOP action instead of a valid click
or form command). Deviations from the expected sequence of
steps accounted for about 25% of the errors. The results of the
review per application are shown in Table II.

D. RQ3: Attack Surface Coverage

Methodology — We now look at the benefits of task-
driven crawling in terms of attack surface coverage using
the VD dataset. A common strategy to measure coverage in
a black-box manner is by counting the number of unique
resources collected by a crawler. Determining similarity be-
tween resources is not trivial, and prior work has shown that
URL-based comparisons are a sufficiently strong signal for
uniqueness. Accordingly, we selected URL-based comparisons
to measure coverage. Since URLs can contain pseudo-random
parameters (e.g., session identifiers or security tokens), we
used a variant of the URL comparison, where we manually
identified these parameter names and ignored them during the
comparison. Additionally, as we are evaluating techniques to
test both URLs and forms, we also include unique forms as
an additional metric for coverage.

Finally, for each metric, we perform pairwise comparisons
of the coverage of YURASCANNER (A) and the other tools
(B). We calculate the unique attack surface discovered by one
of the two tools (A \ B and B \ A) and the attack surface
discovered by both (A ∩B).

Results — The aggregated results across all web applica-
tions are presented in Table III. The per-application results are
in Table IV.

When looking at the absolute coverage, YURASCANNER
generally discovers a smaller unique attack surface than the
other tools. This is likely due to the unfocused strategy
followed by the other tools, which increases the chances of
finding new forms and URLs. However, as we will see in
Section V-E, these forms and URLs are likely located in
shallow areas of web applications.

The most striking result is that the newly discovered attack
surface is very significant, accounting for 35.46% (Forms) and
25.7% (URLs) of the combined attack surface discovered by
both tools (A∪B). This fraction amounts to an average increase
of +55.19% (Forms) and +35.16% (URLs). Additionally, the
interface discovered by both tools (A ∩ B) is relatively small
when compared to either of the unique surfaces discovered by
each tool. On average, this shared surface is 18.3% (Forms)
and 16.9% (URLs), less than half of A \ B and B \ A. Both
results indicate orthogonal capabilities, potentially covering ar-
eas of the attack surface with different inherent characteristics.

Finally, when comparing the two metrics, YURASCANNER
has a slightly higher Forms-over-URLs discovery ratio, sug-
gesting that the type of attack surface discovered by YURA-
SCANNER has a higher density of forms.

E. RQ4: Characterization of the New Attack Surface

The fact that YURASCANNER discovers fewer URLs and
forms than the other tools may lead to wrong conclusions
about performances. This result is a direct consequence of the
unfocused crawling strategy implemented by the other tools:
all clickables are equivalent and equally probable to be the
next action. Such a strategy brings the crawler to diverse areas
of a web application, increasing the chances of finding new
URLs and forms. A strategy like the one of YURASCANNER
keeps the crawler focused on achieving the task objective,

9

Black Widow BFS Rand. BFS
\B ∩ B\ \B ∩ B\ \B ∩ B\

Metric Tot. % Tot. % Tot. % Tot. % Tot. % Tot. % Tot. % Tot. % Tot. %

Forms 632 35.8 339 19.2 791 44.8 635 37.1 336 19.6 739 43.2 631 33.5 340 18.0 908 48.3
URLs 4,476 31.5 2,699 19.0 7,026 49.4 4,301 23.7 2,874 15.9 10,902 60.3 4,160 22.0 3,015 15.9 11,721 62.0

Forms / URL 0.14 - 0.13 - 0.11 - 0.15 - 0.12 - 0.07 - 0.15 - 0.11 - 0.08 -

TABLE III: Aggregated attack surface coverage (absolute and relative). A is YURASCANNER (not shown) and B the other tool.

Black Widow BFS Rand. BFS
App Metric \B ∩ B\ \B ∩ B\ \B ∩ B\

Dolibarr Forms 28 39 37 39 28 60 37 30 104
URL 589 219 1,119 635 173 2,776 616 192 2,128

GitLab Forms 20 43 60 28 35 63 25 38 73
URL 116 317 334 107 326 218 97 336 260

LimeSurvey Forms 14 30 36 21 23 9 36 8 2
URL 403 227 374 420 210 82 520 110 15

MediaWiki Forms 25 11 77 19 17 70 22 14 96
URL 284 251 1,481 284 251 998 273 262 2,292

Moodle Forms 132 123 101 112 143 273 119 136 207
URL 1,229 643 2,040 1,072 800 5,723 1,115 757 4,879

OpenCart Forms 82 1 184 78 5 52 71 12 72
URL 394 90 217 378 106 399 266 218 901

Redacted Forms 117 15 101 122 10 31 107 25 108
URL 346 260 256 373 233 170 199 407 476

OwnCloud Forms 2 10 52 2 10 29 1 11 47
URL 33 125 134 27 131 148 25 133 161

phpBB Forms 168 12 114 164 16 102 163 17 119
URL 796 378 1,017 718 456 315 765 409 489

RedMine Forms 44 55 29 50 49 50 50 49 80
URL 286 189 54 287 188 73 284 191 120

TABLE IV: Per-application attack surface coverage. A is
YURASCANNER (not shown) and B the other tool.

reducing the chances of finding a more diverse set of URLs
and forms. However, the major differentiating element between
the two strategies is that the new attack surface discovered by
YURASCANNER is far deeper than the one discovered by the
other tools, showing the unique skills of YURASCANNER to
handle complex application workflows.

Methodology — In this section, we take a look at the
portion of the attack surface discovered by YURASCANNER,
focusing on how our coverage increases as YURASCANNER
executes tasks’ steps.

Results — Figure 7 shows the distribution of the number of
tasks over the number of steps that YURASCANNER executed.
For failed tasks, we report the number of steps executed before
the error. For partially and fully executed tasks, the number of
steps corresponds to the task length. The majority of tasks
covered a few steps. Zero-step tasks are predominantly failed
executions due to a STOP command. Only 14 of these tasks
were executed partially or completely. These were tasks such
as “Browse the product catalog” where the catalog was shown
in the seed URL. The longest tasks have 15 steps, of which
two executions were partial and one was successful.

During the execution of these tasks, YURASCANNER col-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Steps

100

101

102

103

Ta
sk

s

11

325

155
106

44

19

4

1 1 1

3

107

181

109

32

7

5

2
1

1

359

120
143

52

17

5

3

1

1

2

Success
Partial
Failed

Fig. 7: Number of tasks by their length measured in the number
of steps.

lected forms from the visited pages. When examining the
collection of forms in relation to the steps per task (Figure 8),
we observe that 44% of the forms were also discovered by
at least one of the other tools. These forms are located in
the shallow areas of the web applications, at most at depth
three. At the same depth, YURASCANNER discovered twice as
many forms, i.e., 85.7%. The remaining 14.3% of the forms
discovered by YURASCANNER are at a depth greater than
three. All these forms appear to be out of reach for existing
tools.

F. RQ5: Vulnerability Detection

Methodology — We now look at the detection of XSS
vulnerabilities in all 20 web applications of the TE+VD
dataset. For this experiment, we compared our tool with Black
Widow only. Both tools were let run for four hours each.

We pointed the tools to the admin section of a website to
find reflected cross-site scripting vulnerabilities that unauthen-

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Steps

0.00

10.00

20.00

30.00

85.68

50.00

60.00

70.00

80.00

44.18

90.00

100.00

Fo
rm

s
(%

)

Yura ∩ (BW ∪ BFS ∪ Rand. BFS)
Yura

Fig. 8: Cumulative ratio of forms collected at each step.

Yura BW

Name Tot. Uniq. St
or

ed

R
efl

ec
te

d

St
or

ed

R
efl

ec
te

d

Redacted 12 11 4 7 - 1
GitLab - - - - - -
OpenCart - - - - - -
Redmine - - - - - -
Dolibarr - - - - - -
Moodle 2 1 1 - 1 -
MediaWiki - - - - - -
OwnCloud - - - - - -
LimeSurvey - - - - - -
phpBB - - - - - -
NextCloud - - - - - -
Joomla - - - - - -
Leantime 1 1 - - 1 -
EspoCRM - - - - - -
iTop - - - - - -
MintHCM - - - - - -
Mautic - - - - - -
GLPI - - - - - -
Silverpeas - - - - - -
Monica - - - - - -

TABLE V: Discovered vulnerabilities.

ticated users could exploit by sending a vulnerable link to an
admin user.

Results — In total, YURASCANNER and Black Widow
reported 15 XSS vulnerabilities across three web applications:
Redacted (YURASCANNER 11 and Black Widow one), Moodle
(YURASCANNER one and Black Widow one), and Leantime
(Black Widow one). We manually reviewed all reports to
confirm the presence of the vulnerabilities. All identified vul-
nerabilities were true positives, and we further classified them
as either stored or reflected XSS, as shown in Table V. Only the
vulnerability found in Moodle is not a direct XSS vulnerability
but an HTML meta tag attribute injection vulnerability, which
could escalate into an XSS vulnerability.

Out of the 15 reports, four referred to two unique vul-
nerabilities, resulting in a total of 13 unique vulnerabilities.
All these vulnerabilities are zero-day, with 12 discovered by

YURASCANNER. These vulnerabilities are located between
four and two clicks away from the main page: three vul-
nerabilities are four clicks away from the starting page, two
vulnerabilities are three clicks away, and the remaining six,
including the one found by Black Widow, are no deeper than
two clicks away.

The vast majority of the discovered vulnerabilities can be
exploited by non-admin users. Seven are reflected XSS that a
non-authenticated user can exploit, and one is a stored XSS
that a low-privileged user can exploit. We could not find an
exploit for non-admin users for the remaining five stored XSS.
We discuss the vulnerability notification in Section VI-B.

VI. DISCUSSION

A. Results

In this section, we discuss the main results of this paper.

1) A New Approach and New Opportunities to Explore:
This paper presents one of the first task-driven scanning ap-
proaches, proposing an initial concrete solution to the problem
of defining, generating, and executing tasks on web applica-
tions. This approach serves as a stepping stone to improve
attack surface coverage, particularly for areas that are currently
difficult to reach or completely unexplored.

Task Generation — Our experiments show that YURA-
SCANNER can successfully generate tasks with the aid of an
LLM. 77% of them are tasks associated with valid function-
alities offered by the web applications. The invalid tasks were
mostly caused by insufficient context description, resulting in
incoherent and inconsistent answers (i.e., hallucinations). For
example, if the page representation consists of a single Login
button, LLM could reply with a list of tasks that are irrelevant
to the application under test.

Task Execution — YURASCANNER is effective at exe-
cuting tasks, managing to execute correctly or partially 61.3%
of the valid tasks. The remaining errors are a combination of
direct failure, e.g., deviations and no actions, or indirect, a
state missing because of a previous error (direct).

Execution Accuracy and Tasks Dependency — This
work has highlighted non-trivial dependencies between the
execution accuracy and the dependency between tasks. First,
if a state-changing task fails (e.g., adding an item to the
database), then all other tasks relying on that task (e.g., viewing
or modifying that item) will also fail. This is evident from the
spike in missed state errors likely caused by deviations and
no action errors. Second, task generation can produce tasks
that block other tasks. For example, when testing Leantime,
an application from the VD dataset, a task was to “Delete a
user from the management section,” which YURASCANNER
executed successfully. Unfortunately, that was the only user
account in the system, locking YURASCANNER out and caus-
ing all subsequent tasks to fail.

2) Task-driven Complements Traditional Crawling: The
main result of our paper is demonstrating that task-driven
crawling complements traditional crawling. Our results indi-
cate that each approach excels in covering different areas of
the attack surface with distinct properties: traditional scanning

11

excels in exploring shallow areas, whereas a task-driven ap-
proach is more effective for deeper areas.

New Attack Surface — YURASCANNER discovered about
+55.19% more forms and +35% more URLs when compared
with the other tools.

New Attack Surface is Deeper — The attack surface
discovered by our and the other tools is orthogonal, where only
a small fraction of the surface is discovered by the two. Such
a common surface contains forms that are in shallow areas of
the web application (at most three steps away from the seed
URL). The unique surface discovered by YURASCANNER is
deeper, with new forms discovered up to 15 steps deep.

New Vulnerabilities in the Deeper States — This paper
targeted real-size, modern web applications, used by millions
of users. These applications showed a higher resilience towards
the payloads used by Black Widow. Nevertheless, our task-
driven approach was able to find 11 vulnerabilities in Redacted
(four stored XSS and seven reflected XSS). A closer look at
the vulnerabilities that we discovered, reveals that they are
located from four up to two steps away from the seed URL,
showing the ability of YURASCANNER to identify forms of
long workflows.

B. Ethical Discussion

Experiments Overhead — The experiments described in
this paper were conducted on web applications installed on
our servers. The overhead caused by our experiments, such
as additional network traffic and CPU and memory workload,
was sustained by the internal infrastructure of our institution
and did not affect the developers or users.

Vulnerability Notification — Our experiments identified
previously unknown vulnerabilities in Redacted, Moodle, and
Leantime. We have established communication channels with
the developers and reported the vulnerabilities. Leantime de-
velopers have fixed the vulnerability in version 3.3.0. Moodle
developers have replied that the vulnerability has no impact
under the application’s threat model. Redacted developers have
acknowledged the presence of vulnerabilities and their impact
but did not provide a timeline for the fix. Therefore, we
anonymized the name of their application in the paper.

Open Science and Ethical Considerations — The au-
thors of this paper are deeply committed to an open science
policy. We will share the artifacts of this paper, including the
Docker files of the web applications, the configuration, and
other artifacts generated and collected during the execution
of the experiments. However, we acknowledge that a web
scanner capable of executing tasks may pose new risks that
prior research did not. In particular, YURASCANNER may be
misused to achieve other goals than the ones intended in this
paper, exacerbating issues such as fake account creations and
scraping. Accordingly, we will not publicly share the source
code of YURASCANNER. Instead, we have set up a submission
form3 where interested researchers can apply, stating their

3https://github.com/pixelindigo/yurascanner/tree/ndss25

objectives. We will vet the provided information and grant or
deny access to the source code.

VII. RELATED WORK

Traditional Techniques — Traditional web scanning tech-
niques have been a cornerstone of web application security
for many years. Early scanners like w3af [14], Skipfish [23],
Wapiti [25] and ZAP [13] set the foundation by performing
common checks for known vulnerabilities such SQLi [26], file
inclusion [27], and XSS [28], [29], often testing a dictionary
of known exploits. However, these scanners were primarily
designed to scan static pages and lacked the sophistication
needed to handle the dynamic nature of web applications
such as client-side and server-side states. To address these
shortcomings, multiple scanners have been proposed by se-
curity professionals (e.g., Wapiti [25] and Arachni [12]),
academia (e.g., Enemy of the State [5] and jÄk [2]), and
industry (e.g., Burp [30]). For example, Enemy of the State
scanner [5] utilizes a heuristic-based approach to deduce the
server’s state by analyzing how different requests lead to
variations in the links present on web pages. However, reliance
on heuristic methods often leads to incomplete or inaccurate
state inferences. Other crawlers like Skipfish [23], ZAP [13],
Arachni [12] and w3af [14] prioritize performance over server-
side state by using parallel requests. In comparison, jÄk [2]
focuses on the client-side state, capturing JavaScript events to
enhance coverage, but jÄk’s event handling is limited, e.g., it
is unable to capture form submission events. Scanners like En-
emy of the State, w3af, and ZAP can handle JavaScript-based
UIs, but they do not model events, thereby failing to detect
vulnerabilities that depend on them (e.g., form submissions,
clicks, etc).

State-of-the-art Scanners — A more recent line of work
combined dictionary-based scanning with in-browser dynamic
testing and dynamic taint tracking techniques [3], [31], [32].
For example, Black Widow [3] is one of such approaches. It
creates a navigation model of the application by triggering
static structures in the UI (e.g., anchors, forms, etc) and
JavaScript events (e.g., mouse clicks), enabling it to retrace its
steps. Then, during the page visit, it enriches the model with
data flow information using dynamic testing. It identifies input
fields, probes them with test values, and then monitors their
reappearance in the HTML document (i.e., reflected XSS).
Black Ostrich [33] extends Black Widow by improving the
crawler’s ability to pass validation checks on input fields. It
incorporates string constraint solving to dynamically infer valid
inputs from regular expression patterns in web applications.
Other works [31], [32] scanned websites for vulnerabilities
using a fully-fledged dynamic taint tracking approach.

Scanning Protected States — A different line of work
proposed scanners that can reach pages after the login. The
first category of these scanners is those based on a manually
curated list of login scripts (e.g., [34], [35]). However, such
approaches do not scale due to manual analysis requirements.
The second category scanners leverage SSOs for automated
login (e.g., [36]). However, these scanners often struggle with
the diverse and evolving SSO protocols, requiring frequent
updates and limiting their effectiveness to only applications

12

using SSOs, leaving out many that use custom authentication
mechanisms. The third category consists of the scanners rely-
ing on pattern matching and regular expressions, e.g., Cookie
Hunter [37] and Shepherd [38]. However, these approaches
are too brittle to minor changes in the UIs, hampering their
effectiveness. For instance, Cookie Hunter has a high failure
rate in automated sign-ups, with 88% of attempts failing.
Additionally, they require continuous creation and maintenance
of new patterns, which also does not scale. In comparison,
our approach can handle compound client-server states, like
multi-step shopping processes, allowing it to follow complex
workflows to reach deeper areas for security scans.

Using LLMs for Web Interactions — Recently, we have
seen new ideas using LLMs to visit pages. Deng et al. [39]
introduced Mind2Web, a dataset for evaluating web agents that
can follow language instructions to complete tasks on websites.
As part of the same work, they implemented MindAct, an
agent that uses language models to predict the next action on a
webpage given a task. Deng et al. proposed PentestGPT [40],
a semi-automated and interactive penetration testing tool that
relies on LLM to guide testers in order to streamline the
penetration testing process. For instance, given an IP address
as input for testing, it outputs step-by-step guidance for various
tests (e.g., nmap scan, identifying open ports, enumerating
FTP services, etc). Finally, Fang et. al. [41] explored whether
LLM agents can be abused for autonomous website hacking.
Their work explores the potential for malicious applications of
LLMs, while ours focuses on leveraging their capabilities for
ethical security testing, increasing the coverage by reaching
deep application states.

Other non-academic works have demonstrated how LLMs
can be utilized to scrape content from webpages [42], [43],
while projects such as Natbot [9] and Skyvern [44] assist users
in navigating pages.

Out of the tools mentioned above, MindAct, Natbot, and
Skyvern share the most similarities to YURASCANNER since
they aim to execute diverse tasks in web applications using
LLMs. However, their main objective is to assist users in per-
forming manually provided tasks. In contrast, YURASCANNER
targets web application coverage and does not rely on user-
provided tasks. Instead, YURASCANNER extracts the tasks
automatically and executes them to explore the web application
without human guidance.

Additionally, the most significant difference is how YURA-
SCANNER handles form submissions. Natbot, MindAct, and
Skyvern fill out forms using the same prompt they use for
navigation. Moreover, in the case of Natbot and MindAct,
each navigation action can only fill out a single input field.
In contrast, YURASCANNER uses a separate prompt to fill a
form in one go.

VIII. CONCLUSION

This paper presents one of the first task-driven scanning
approaches and implementation (YURASCANNER), providing
a foundational solution to the challenge of defining, generating,
and executing tasks on web applications. Our methodology
leverages large-language models to autonomously navigate
complex workflows, offering significant improvements in at-
tack surface coverage, particularly in areas that traditional

scanners fail to reach. By modeling the scanner as a goal-
based agent and integrating an XSS engine, we demonstrated
a comprehensive system capable of uncovering deeper states
and new vulnerabilities within web applications.

The primary outcome of this paper is the demonstration
that task-driven crawling effectively complements traditional
scanning techniques. Our experiments reveal that while tradi-
tional scanning methods are adept at exploring shallow areas of
the attack surface, the task-driven approach excels in delving
into deeper, more intricate regions. This complementary nature
results in a more thorough exploration of web applications, as
evidenced by YURASCANNER discovering a substantial num-
ber of new attack surfaces and zero-day XSS vulnerabilities.
These findings underscore the potential of task-driven scanning
to enhance web security by addressing previously unexplored
areas and improving overall vulnerability detection.

REFERENCES

[1] A. Mesbah, E. Bozdag, and A. van Deursen, “Crawling AJAX by
Inferring User Interface State Changes,” in 2008 Eighth International
Conference on Web Engineering, 2008, pp. 122–134.

[2] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow, “jÄk: Using
Dynamic Analysis to Crawl and Test Modern Web Applications,” in
Research in Attacks, Intrusions, and Defenses, H. Bos, F. Monrose, and
G. Blanc, Eds. Cham: Springer International Publishing, 2015, pp.
295–316.

[3] B. Eriksson, G. Pellegrino, and A. Sabelfeld, “Black Widow: Blackbox
Data-driven Web Scanning,” in 2021 IEEE Symposium on Security and
Privacy (SP), 2021, pp. 1125–1142.

[4] A. Stafeev and G. Pellegrino, “SoK: State of the Krawlers –
Evaluating the Effectiveness of Crawling Algorithms for Web Security
Measurements,” in 33rd USENIX Security Symposium (USENIX
Security 24). Philadelphia, PA: USENIX Association, Aug. 2024,
pp. 719–737. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity24/presentation/stafeev

[5] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy
of the State: A State-Aware Black-Box Web Vulnerability
Scanner,” in 21st USENIX Security Symposium (USENIX
Security 12). Bellevue, WA: USENIX Association, 2012, pp.
523–538. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/doupe

[6] Y. Zheng, Y. Liu, X. Xie, Y. Liu, L. Ma, J. Hao, and Y. Liu, “Automatic
Web Testing Using Curiosity-Driven Reinforcement Learning,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 423–435.

[7] S. McAllister, E. Kirda, and C. Kruegel, “Leveraging User Interactions
for In-Depth Testing of Web Applications,” in Recent Advances in
Intrusion Detection, R. Lippmann, E. Kirda, and A. Trachtenberg, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 191–210.

[8] E. Z. Liu, K. Guu, P. Pasupat, T. Shi, and P. Liang, “Reinforcement
Learning on Web Interfaces using Workflow-Guided Exploration,”
in 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. [Online]. Available:
https://openreview.net/forum?id=ryTp3f-0-

[9] N. Friedman. (2022) Natbot. https://github.com/nat/natbot.
[10] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.

Pearson, 2016.
[11] A. Doupé, M. Cova, and G. Vigna, “Why Johnny Can’t Pentest: An

Analysis of Black-Box Web Vulnerability Scanners,” in International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, 2010.

[12] T. Laskos. Arachni. [Online]. Available: https://www.arachni-scanner.
com/

[13] (2010) OWASP Zed Attack Proxy. https://www.zaproxy.org/.
[14] A. Riancho. (2007) w3af: Open Source Web Application Security

Scanner. http://w3af.org/.

13

[15] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language Models are
Few-Shot Learners,” CoRR, vol. abs/2005.14165, 2020. [Online].
Available: https://arxiv.org/abs/2005.14165

[16] J. S. Park, J. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and
M. S. Bernstein, “Generative Agents: Interactive Simulacra of Human
Behavior,” in Proceedings of the 36th Annual ACM Symposium on
User Interface Software and Technology, ser. UIST ’23. New York,
NY, USA: Association for Computing Machinery, 2023. [Online].
Available: https://doi.org/10.1145/3586183.3606763

[17] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,
Z. Li, D. Li, E. P. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica,
“Judging LLM-as-a-judge with MT-bench and Chatbot Arena,” in
Proceedings of the 37th International Conference on Neural Information
Processing Systems, ser. NIPS ’23. Red Hook, NY, USA: Curran
Associates Inc., 2024.

[18] AI@Meta. (2024) Llama 3. [Online]. Available: https://github.com/
meta-llama/llama3/blob/main/MODEL CARD.md

[19] G. Team and G. DeepMind, “Gemma 2: Improving Open Language
Models at a Practical Size,” 2024. [Online]. Available: https:
//storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf

[20] Bitnami Application Catalog. Last accessed June 2024. [Online].
Available: https://bitnami.com/stacks

[21] Elestio. Last accessed June 2024. [Online]. Available: https://elest.io/
fully-managed-services/applications

[22] DockerHub. Last accessed June 2024. [Online]. Available: https:
//hub.docker.com/search?categories=Content+Management+System

[23] M. Zalewski. (2010) Skipfish. https://code.google.com/archive/p/
skipfish.

[24] S. Hykes. Docker. [Online]. Available: https://www.docker.com/

[25] N. Surribas. Wapiti. [Online]. Available: https://github.com/
wapiti-scanner/wapiti

[26] W. G. Halfond, J. Viegas, A. Orso et al., “A classification of sql injection
attacks and countermeasures.” in ISSSE, 2006.

[27] Y. Makino and V. Klyuev, “Evaluation of web vulnerability scanners,”
in 2015 IEEE 8th International Conference on Intelligent Data Acqui-
sition and Advanced Computing Systems: Technology and Applications
(IDAACS), vol. 1, 2015, pp. 399–402.

[28] S. Lekies, B. Stock, and M. Johns, “25 million flows later:
large-scale detection of DOM-based XSS,” in Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications
Security, ser. CCS ’13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 1193–1204. [Online]. Available:
https://doi.org/10.1145/2508859.2516703

[29] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “You are what you include:
large-scale evaluation of remote javascript inclusions,” in Proceedings
of the 2012 ACM Conference on Computer and Communications
Security, ser. CCS ’12. New York, NY, USA: Association for
Computing Machinery, 2012, p. 736–747. [Online]. Available:
https://doi.org/10.1145/2382196.2382274

[30] BurpSuite. Last accessed June 2024. [Online]. Available: https:
//portswigger.net/burp

[31] D. Klein, T. Barber, S. Bensalim, B. Stock, and M. Johns, “Hand Sani-
tizers in the Wild: A Large-scale Study of Custom JavaScript Sanitizer
Functions,” in 2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P), 2022, pp. 236–250.

[32] S. Khodayari, T. Barber, and G. Pellegrino, “The Great Request
Robbery: An Empirical Study of Client-side Request Hijacking Vul-
nerabilities on the Web,” in 2024 IEEE Symposium on Security and
Privacy (SP), 2024, pp. 166–184.

[33] B. Eriksson, A. Stjerna, R. De Masellis, P. Rüemmer, and A. Sabelfeld,
“Black Ostrich: Web Application Scanning with String Solvers,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023, pp. 549–563.

[34] J. Rautenstrauch, M. Mitkov, T. Helbrecht, L. Hetterich, and B. Stock,
“To Auth or Not To Auth? A Comparative Analysis of the Pre- and
Post-Login Security Landscape,” in 2024 IEEE Symposium on Security
and Privacy (SP), 2024.

[35] A. Sudhodanan, S. Khodayari, and J. Caballero, “Cross-Origin State
Inference (COSI) Attacks: Leaking Web Site States through XS-
Leaks,” in Proceedings of the Network and Distributed Systems Security
Symposium, 2020.

[36] Y. Zhou and D. Evans, “SSOScan: Automated Testing of
Web Applications for Single Sign-On Vulnerabilities,” in
23rd USENIX Security Symposium (USENIX Security 14).
San Diego, CA: USENIX Association, Aug. 2014, pp.
495–510. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/zhou

[37] K. Drakonakis, S. Ioannidis, and J. Polakis, “The cookie hunter:
Automated black-box auditing for web authentication and authorization
flaws,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020, pp. 1953–1970.

[38] H. Jonker, S. Karsch, B. Krumnow, and M. Sleegers, “Shepherd: A
Generic Approach to Automating Website Login,” in Proceedings of
the 2020 Workshop on Measurements, Attacks, and Defenses for the
Web (MADWeb), United States, 2020.

[39] X. Deng, Y. Gu, B. Zheng, S. Chen, S. Stevens, B. Wang, H. Sun,
and Y. Su, “Mind2Web: towards a generalist agent for the web,” in
Proceedings of the 37th International Conference on Neural Information
Processing Systems, ser. NIPS ’23. Red Hook, NY, USA: Curran
Associates Inc., 2024.

[40] G. Deng, Y. Liu, V. Mayoral-Vilches, P. Liu, Y. Li,
Y. Xu, T. Zhang, Y. Liu, M. Pinzger, and S. Rass,
“PentestGPT: Evaluating and Harnessing Large Language Models
for Automated Penetration Testing,” in 33rd USENIX Security
Symposium (USENIX Security 24). Philadelphia, PA: USENIX
Association, Aug. 2024, pp. 847–864. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity24/presentation/deng

[41] R. Fang, R. Bindu, A. Gupta, Q. Zhan, and D. Kang, “LLM
Agents can Autonomously Hack Websites,” 2024. [Online]. Available:
https://arxiv.org/abs/2402.06664

[42] T. Connors. (2024) Building a Universal AI Scraper. https://timconnors.
co/posts/ai-scraper.

[43] (2023) CrawlGPT. https://github.com/gh18l/CrawlGPT.

[44] (2024) Skyvern. https://github.com/Skyvern-AI/skyvern.

APPENDIX A
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: We have set up the vetting process to
ensure that YURASCANNER would not be misused. Up-to-date
instructions for source code access are located at the following
link: https://github.com/pixelindigo/yurascanner/tree/ndss25.

2) Hardware dependencies: We tested the setup on a four
core system with 16GB of RAM and 60GB of disk space. This
should be sufficient for running single experiments. Running
more experiments in parallel might require a higher RAM
capacity and core count.

3) Software dependencies: We tested the setup on Ubuntu
22.04.4 with Docker version 24.0.7, docker-compose version
1.29.2 and Python 3.10.12.

4) Benchmarks: We use the Arachnarium1 framework to
run the experiments.

1https://github.com/pixelindigo/arachnarium

14

B. Artifact Installation & Configuration

Install required packages

sudo apt update && sudo apt
install -y docker.io docker-compose
python3-virtualenv

Add your user to docker group

sudo usermod -aG docker user

Enable docker service

sudo systemctl enable docker

Reboot your system and ensure that your user is in
docker group

id command output should contain docker

Create and activate a virtualenv

virtualenv .env && source
.env/bin/activate

Install required Python packages

pip install -r requirements.txt

C. Experiment Workflow

The artifact is comprised of two parts: a) raw experiment
data with the scripts to generate the figures and b) the
YURASCANNER source code and the necessary Arachnarium
modules to run the experiments.

D. Major Claims

• (C1): YURASCANNER can automatically generate and
execute tasks on a website. This is proven by the
experiment (E1) whose results are reported in Section
V.C.

• (C2): YURASCANNER demonstrates orthogonal ca-
pabilities, when compared to the other techniques,
potentially covering areas of the attack surface with
different inherent characteristics. This is proven by the
experiment (E2) whose results are reported in Tables
III and IV.

• (C3): The new attack surface discovered by YURA-
SCANNER is far deeper than the one discovered by
the other tools, showing the unique skills of YURA-
SCANNER to handle complex application workflows.
This is proven by the experiment (E3) whose results
are illustrated in Figures 7 and 8.

• (C4): YURASCANNER has been used to uncover zero
day bugs in Redacted and Moodle. This is proven by
the experiment (E4) in Section V.F.

E. Evaluation

The scale of the experiments in the paper is quite large
(10-20 webapps × 2-4 scanners × 4 hours ≈ 80-320 compute
hours). Typically, the compute hours could be scaled down
significantly if any form of parallelization is employed. Unfor-
tunately, we also rely on OpenAI API which has organization-
wide rate limits. As there are multiple research groups in our

organization, we limit the YURASCANNER experiments to a
single experiment at a time. Therefore, we suggest running
scaled-down experiments, i.e., running a single web application
instead of all twenty.

1) Experiment (E1): [Task Execution Classification] [60
human-minutes + 4 compute hours]: run the experiment with
Redacted web application and manually verify the task execu-
tion capabilities of YURASCANNER.

[How to] Run the experiment with YURASCANNER and
observe it’s task execution capabilities.

[Execution]

Run the Redacted experiment

arachnarium run crawlers/yurascanner
apps/redacted http://web/redacted/admin/
--screenshot --username admin --password
password --gpt4 --autotask --headless -t
240

Navigate to the screenshots folder

cd experiments/redacted/yurascanner/

cd <uuid>/report/screenshots/<timestamp>

Observe the generated jpg files

[Results] Observe the screenshots of the run. The bottom
of a screenshot would display the current task being executed.
Note that not all tasks would be executed successfully, as
showed in Table II. Instead, some of the tasks would be exe-
cuted partially (reaching the functionality but failing to execute
the last action) or even deviate from the target functionality.

2) Experiment (E2): [Attack Surface Coverage] [10
human-minutes + 10 compute minutes]: extract the URLs and
the forms discovered during the experiment, compare them
against the ones discovered by the other tools and show the
results in the tables.

[How to] The csv files for tables III and IV are generated
in experiment_data/scripts/tables.py as a part
of generate_figures.sh script.

[Preparation] We will be using the raw results of
task_execution experiment to generate the tables. Alter-
natively, populate task_execution folder with the con-
tents of experiments folder.

[Execution]

Run the script to generate the figures

bash generate_figures.sh

[Results] The figures/ folder should contain
table4_full_attack_surface.csv and
table3_attack_surface.csv files, which would
have a similar structure to the tables III and IV in the paper.

3) Experiment (E3): [Characterization of the New Attack
Surface] [10 human-minutes + 10 compute minutes]: extract
the forms discovered during the experiment and the length of
the tasks, compare them against the ones discovered by the
other tools and show the results in the figures.

15

[How to] The figures 7 and 8 are generated in
experiment_data/scripts/plot_steps.py and
experiment_data/scripts/form_analysis.py as
a part of generate_figures.sh script.

[Preparation] We will be using the raw results of
task_execution experiment to generate the tables. Alter-
natively, populate task_execution folder with the con-
tents of experiments folder.

[Execution]

Run the script

bash generate_figures.sh

[Results] The figures/ folder
should contain figure7_steps.pdf and
figure8_forms_cumulative.pdf files, which should
show a similar figure to the figures 7 and 8 in the paper.

4) Experiment (E4): [Vulnerability Detection] [10 human-
minutes + 8 compute hours]: run the experiment with Redacted
and Moodle web applications and show that YURASCANNER
finds zero-day bugs.

[How to] The raw data already contains the logs of the
found bugs. Otherwise, run a new experiment and check the
results.

[Preparation] If you want to use the raw data col-
lected during our experiments leave the files as is
and run python scripts/get_yura_vulns.py and
python scripts/get_bw_vulns.py from within the
experiment_data folder.

Otherwise, run the experiment similarly to (E1). Replace
the vulnerability_detection folder with the contents
of experiments folder.

[Execution]

[Optional] Run the Redacted experiment

arachnarium run crawlers/yurascanner
apps/redacted http://web/redacted/admin
--screenshot --username admin --password
password --gpt4 --autotask --headless -t
240

[Optional] Run the Black Widow experiment

arachnarium run crawlers/blackwidow
apps/redacted --url http://web/redacted/admin
-t 240

Run the scripts

python scripts/get_yura_vulns.py
vulnerability_detection | uniq

python scripts/get_bw_vulns.py
vulnerability_detection | uniq

Or (If you run the experiments yourself)

python scripts/get_yura_vulns.py
experiments | uniq

python scripts/get_bw_vulns.py
experiments | uniq

[Results] Observe the result of get_*_vulns.py scripts
as it would contain the urls on which the vulnerabilities were
found. Note that due to the randomness (Black Widow uses
a randomized navigation, OpenAI models are not static) the
results might be different to ours.

F. Notes

For ethical reasons, which are listed in the paper in
Section VI.B, we will not be making the source code of
YURASCANNER publicly available. Instead, we would provide
the source code on request. The process is described in Section
VI.B.

16

