
Everything You Wanted to Know About DOM Clobbering
“But Were Afraid to Ask”

@Soheil__K soheil.khodayari@cispa.de

Soheil Khodayari

CISPA - Helmholtz Center for Information Security

IT Security Conference, May 11-12, 2023

The Rise of Web Applications: Where User Input Runs Amok!

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 2

• Web apps accept and process plethora of user input
• In many different forms…

The Rise of Web Applications: Where User Input Runs Amok!

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 3

User Input Can Go Rogue…

Are we validating all these inputs properly

The “One-Ring-to-Rule-Them-All” Attack

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 4

• Arbitrary client-side code execution

vuln-site.com/#

1 2
Code Execution

var input = window.location.hash.substr(1);
If(input.length > 0){

var div = document.querySelector(‘div’);
div.innerHTML = input;
// […]

}

script

3

Attacker Victim Vulnerable Site

The “One-Ring-to-Rule-Them-All” Attack

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 5

• Arbitrary client-side code execution

Achieved by code injection

Mitigated by controlling or disallowing code execution

let clean_input = sanitize(input)

HTML Sanitization

Content Security Policy
default-src 'none'; script-src: 'self';

Well-known

The “One-Ring-to-Rule-Them-All” Attack

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 6

• Arbitrary client-side code execution

What if code-less HTML can cause arbitrary code execution?

Achieved by code injection

JavaScript Programs Execution Environment

Unforeseen
Interactions

Mitigated by controlling or disallowing code execution

Example:

DOM Clobbering

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 7

DOM Tree
Vuln. Script?

https://example.com

2

<script>

Code-less markup injection

Markup id/name collides with sensitive variables or APIs, and overwrites them

document.globalConfig = {'src': 'script.js', [...]};
// [...]
var s = document.createElement(‘script’);
s.src = document.globalConfig.src;
document.body.appendChild(s); Arbitrary Code

Execution

1 Inject HTML markup

• Attacker need to add code-less HTML to DOM tree

DOM Clobbering: Threat Model

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 8

Injection (through input params)
• URL params
• Window name
• Document referrer
• postMessages

Insertion (through webapp functionalities)

• Markdown descriptions (e.g., code repositories)
• Web text editors
• Web-based email clients and messages
• Posts in CMS apps
• Comments
• …

• Locating DOM elements:

DOM Clobbering: Why It Happens?

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 9

The clean way: DOM query selectors

The dirty way: Property access on window or document

document.querySelector("[id=Y]")

document.X.Y, or window.Y

Window

Document

<html>

<form name=X>

<input id=Y>

<input id=Z>

n1

n2

n3

n4

n5

n6

Example: select node in the tree. n5

DOM Clobbering: Why It Matters?

Source: https://chromestatus.com/metrics/feature/timeline/popularity/1824
Soheil Khodayari - CISPA Helmholtz Center for Information Security | 10

Cannot immediately turn off…

~ 11% of pages depend on clobbered variables

Clobbered Variable Access Usage

• Example: DOM Clobbering in GMail’s AMP4Email sanitizer (2019)

DOM Clobbering: Why It Matters?

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 11

Gmail’s Dynamic Mail Feature1

Arbitrary code execution

1Source: https://workspaceupdates.googleblog.com/2019/06/dynamic-email-in-gmail-becoming-GA.html

DOM Clobbering: Overview

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 12

Clobbering Markups and Browser Behaviours

1

Existing Defenses and their Effectiveness

3

2

Vulnerability Detection and Prevalence

DOM Clobbering: Overview

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 13

Clobbering Markups and Browser Behaviours

1

Existing Defenses and their Effectiveness

3

2

Vulnerability Detection and Prevalence

Clobbering Markups: Problem Statement

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 14

• First DOM Clobbering instance in 20101

• Affected frame-busting code

<iframe name=self src=“evil.com”>

Attack markup (injection)

top.location = self.location

Application code

Q: What other attack markups will work?

Source: 1 Rydstedt et. al, “Busting Frame Busting: A Study of Clickjacking Vulnerabilities at Popular Sites,” SP 2010

Clobbering Markups: What To Overwrite?
• Different attack targets

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 15

SINK_FUNC(X)

Variables
SINK_FUNC(window.X)

Globals

SINK_FUNC(document.X) SINK_FUNC(window.X.Y)

SINK_FUNC(document.X.Y)

SINK_FUNC(X.Y)

Object Properties

Custom Symbols

Built-in DOM APIs

SINK_FUNC(document.documentURI)

Properties

SINK_FUNC(document.title)

SINK_FUNC(window.caches)

Methods
window.addEventListner()

window.createImageBitmap()

Clobbering Markups: Overshadow DOM APIs
• Not all built-in APIs can be successfully overshadowed

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 16

<iframe name=documentURI src=evil.com>SINK(document.documentURI)

Clobberable

<iframe name=location src=evil.com>SINK(document.location)

Challenge: can also be browser-dependent

window.crossOriginIsolated

Example

Clobbering Markups: How To Clobber?

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 17

Abuse HTML and DOM specification rules

<form id=X><input name=Y>

window.X.YClobbering Target:

Example

• R1: [§7.3.3-HTML] Named Access on Window

• R2: [§3.1.5-HTML] DOM Tree Accessors

• R3: [§4.10.3-HTML]Form Parent-Child

• R4:[§4.8.5-HTML] Window Proxies

• R5: [§4.2.10.2-DOM] HTMLCollection

Rules: R1+R3

Rules: R1+R5

Clobbering Markups: Automatic Discovery
Goal: automatically generate and test clobbering markups starting from known ones

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 18

Review HTML
Specifications

1
Derive Markup

Generation Rules

2

Test Markups
in Browsers

3

Known HTMLCollection window.X.YClobbering Target

Mutate tags, attributes,
Relationship and targets

Idea for Markup Generation

Example:

<div id=X>

Clobbering Markups: Automatic Discovery

Markup Generation and Testing

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 19

• 24M test cases

• 19 browsers (mobile and desktop)

• Covered all tags, attributes, relations and targets

• Targets: variable X, object property X.Y, and built-in APIs

Uncovered 31,432 distinct clobbering markups across five different techniques

Results

Only 481 previously known

<object name=X><object name=X id=Y>

NewExample: HTMLCollection: object tags with the same name

Clobbering Markups: Automatic Discovery

Markup Generation and Testing

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 20

• 24M test cases

• 19 browsers (mobile and desktop)

• Covered all tags, attributes, relations and targets

• Targets: variable X, object property X.Y, and built-in APIs

Uncovered 31,432 distinct clobbering markups across five different techniques

Results

Only 481 previously known

<object name=X><object name=X id=Y>

NewExample: HTMLCollection: object tags with the same name

See our paper for more!

Markup Generator Service – Online Demo

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 21

Clobbering Markups: How Do Browsers Behave?
• In general, divergent

• In total, 10 distinct behavioural groups

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 22

Defending increasingly more challenging

For 31.2K out of 31.4K clobbering markups,
at least one browser that disagrees with others

Chromium-based browsers
(59 classes of clobbering markups)

Firefox Desktop/Android
(35 classes of clobbering markups)

Browser Testing Service – Online Demo

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 23

DOM Clobbering: Overview

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 24

Clobbering Markups and Browser Behaviours

1

Existing Defenses and their Effectiveness

3

2

Vulnerability Detection and Prevalence

Vulnerability Detection: TheThing (JAW v2.x)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 25

• Proposed an open source, static-dynamic tool for detecting DOM Clobbering at scale
• Components

• Data Collection
• Vulnerability Analysis
• Vulnerability Verification

https://ja-w.me

Vulnerability Prevalence

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 26

• Empirical study to quantify the prevalence of DOM clobbering in the wild

Tranco top 5K websites, 205.6K webpages, 18.3M scripts, 24.6B LoC

Testbed

Results

• Detected 9,467 clobberable data flows across 491 affected sites

• Exploits for 44 websites (confirmed and patched):
• E.g., GitHub, Trello, Vimeo, Fandom, WikiBooks and VK
• Client-side XSS, open redirections and request forgery attacks

Example: GitHub

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 27

• Double DOM clobbering trick

Script 1

Script 2

Example: GitHub

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 28

• Double DOM clobbering trick

var s= document.createElement(‘script’);
s.src = window.BOOMR.url || DEFAULT_BOOMR_SRC;
// […]
document.head.appendChild(s);

document.addEventListener(‘click’, (e)=> {/* […] /* });
// […]
var BOOMR = {};
BOOMR.url = ‘boomerang.js’

Code Execution

DOM Clobbering: Overview

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 29

Clobbering Markups and Browser Behaviours

1

Existing Defenses and their Effectiveness

3

2

Vulnerability Detection and Prevalence

Defenses and their Effectiveness (1 / 5)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 30

Mitigations script-src directive:

• (+) constrains script sources to trusted domains, preventing src clobbering
• (-) does not prevent clobbering params of dynamic code eval functions

Content Security Policy

~85% of vulnerabilities cannot be mitigated by CSP

Defenses and their Effectiveness (2 / 5)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 31

Mitigations

Content Security Policy
DOM Object Freezing

~85% of vulnerabilities cannot be mitigated by CSP

Object.freeze() API:

• (+) prevent from being overwritten by named DOM elements
• (-) ineffective when the DOM clobbering source is a built-in API

~21% of vulnerabilities cannot be mitigated by object freezing

script-src directive:

• (+) constrains script sources to trusted domains, preventing src clobbering
• (-) does not prevent clobbering params of dynamic code eval functions

Defenses and their Effectiveness (3 / 5)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 32

Mitigations

Sanitizer
Clobbering Markups

(31.4K of RQ1)

Evaluated the robustness of 29 client-side and server-side HTML sanitizers
• JS, Python, PHP, C#, and Java

Default Strict

Config

<a />

Output

?

Results

Content Security Policy
DOM Object Freezing
HTML Sanitization

In total, 16 sanitizers vulnerable to at least one clobbering markup by default
• Including popular ones like DOMPurify, Mozilla Bleach, and Google Caja
• 13 of them also vulnerable in most strict config

The other 13 sanitizers always remove named properties
• Including cases that do not lead to DOM Clobbering (e.g.,)

Defenses and their Effectiveness (4 / 5)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 33

Content Security Policy
DOM Object Freezing
HTML Sanitization
Namespace Isolation

Mitigations

Sanitizer

Alternative: prefix/isolate named properties instead of removing them
• (+) mitigates almost all DOM Clobbering cases
• (-) may require some implementation changes by developers

Contribution: implemented namespace isolation in DOMPurify
• Use the new SANITIZE_NAMED_PROPS config

?

Learn more on GitHub...

Defenses and their Effectiveness (5 / 5)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 34

HTML Sanitization
Namespace Isolation
Content Security Policy
DOM Object Freezing

Mitigations

Kill Switch

Disabling DOM Clobbering

Solution: disable named properties at browser-level?
• (+) fixes all DOM Clobbering cases
• (-) can cause breakage

Proposal to W3C:
Opt-in CSP/feature
policy flag to allow
developers to disable
name properties

Measurement

Cost: 13.3% of webpages use named properties and will break (~51% of sites)
Benefit: fixes the 491 vulnerable sites (i.e., 9.8% of top 5K sites)

breakage-benefit balance: ratio of ~5:1

Infeasible

Vulnerable Patterns and Guidelines

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 35

• Identified eight common vulnerable code patterns in the wild

#1: Explicit Variable Declarations

var VAR1 = ‘string’;

If(!API instanceof HTMLElement)

#2: Strict Type Checking

const VAR1 = ‘string’;

#3: Do Not Use Document for Globals

Patterns

1,214 webpages

var VAR2 = window.VAR1 || CONST;
SINK(VAR2);A

832 webpages

var VAR2 = [windoc.]API || CONST;
SINK(VAR2);B

655 webpages
[document.VAR1 = CONST];
SINK(document.VAR1 || CONST);C

Guidelines

Vulnerable Patterns and Guidelines

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 36

• Identified eight common vulnerable code patterns in the wild

#1: Explicit Variable Declarations

var VAR1 = ‘string’;

If(!API instanceof HTMLElement)

#2: Strict Type Checking

const VAR1 = ‘string’;

#3: Do Not Use Document for Globals

Patterns

1,214 webpages

var VAR2 = window.VAR1 || CONST;
SINK(VAR2);A

832 webpages

var VAR2 = [windoc.]API || CONST;
SINK(VAR2);B

655 webpages
[document.VAR1 = CONST];
SINK(document.VAR1 || CONST);C

Guidelines

See our paper for more! Incorporated to OWASP

Conclusion

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 37

• Clobbering markups come in many forms (i.e., 31.4K variants)

• DOM Clobbering is ubiquitous in the wild (i.e., 9.8% of sites)

• Existing defenses helpful but may not completely cut it

@Soheil__K github.com/SoheilKhodayari/TheThingdomclob.xyz

Thank You!

