
It's (DOM) Clobbering Time:
Attack Techniques, Prevalence, and Defenses

Soheil Khodayari and Giancarlo Pellegrino

CISPA Helmholtz Center for Information Security

44th IEEE Symposium on Security and Privacy
May 22-25, 2023

soheil.khodayari@cispa.de

DOM Clobbering

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 2

DOM Tree Vuln. Script

https://example.com

2

1 Inject HTML markup

<script>

Arbitrary Code
Execution

Code-less markup injection attack

Markup id/name collides with sensitive variables or APIs, and overwrites them

Problem Statement

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 3

• Limited knowledge about DOM Clobbering
• First instance in 2010 affecting frame-busting code

<iframe name=self src=“evil.com”>

Attack markup (injection)

top.location = self.location

Application code

Q: What other attack markups will work?

RQ3: Defenses and their Effectiveness
Recent DOM Clobbering vulnerabilities in
popular sites1 question the efficacy of defenses

Many combinations of tags, attributes, code
features, and browser behaviours unexplored

RQ1: Clobbering Markups and Browser Behaviours

RQ2: Vulnerability Detection and Prevalence
No automatic detection technique or tool, and
prevalence is unknown

1Source: https://research.securitum.com/xss-in-amp4email-dom-clobbering/

RQ1: Clobbering Markups
Goal: automatically generate DOM Clobbering markups

24M test cases, 19 browsers (mobile and desktop), cover all tags, attributes, relations and targets

• Test clobbering of variable X, object property X.Y, and built-in APIs

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 4

Uncovered 31,432 distinct clobbering markups across five different techniques

Review HTML
Specifications

1
Derive Markup

Generation Rules

2

Test Markups
in Browsers

3

Results

Only 481 previously known

Known HTMLCollection: any two tags with the same id

Clobbering target: variable x.y

Example:

<object name=x><object name=x id=y>

NewExample: HTMLCollection: object tags with the same name

RQ1: Clobbering Markups
Goal: automatically generate DOM Clobbering markups

24M test cases, 19 browsers (mobile and desktop), cover all tags, attributes, relations and targets

• Test clobbering of variable X, object property X.Y, and built-in APIs

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 5

Uncovered 31,432 distinct clobbering markups across five different techniques

Review HTML
Specifications

1
Derive Markup

Generation Rules

2

Test Markups
in Browsers

3

Results

Only 481 previously known

Known HTMLCollection: any two tags with the same id

Clobbering target: variable x.y

Example:

<object name=x><object name=x id=y>

NewExample: HTMLCollection: object tags with the same name

See paper for more!

RQ1: Clobbering Markups – Online Demo

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 6

RQ2: Vulnerability Detection – TheThing (JAW v2.x)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 7

• Proposed an open source, static-dynamic tool for detecting DOM Clobbering at scale
• Components

• Data Collection
• Vulnerability Analysis
• Vulnerability Verification

https://ja-w.me

RQ2: Vulnerability Prevalence

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 8

• Empirical study to quantify the prevalence of DOM clobbering in the wild

Tranco top 5K websites, 205.6K webpages, 18.3M scripts, 24.6B LoC

Testbed

Results

• Detected 9,467 clobberable data flows across 491 affected sites

• Exploits for 44 websites (all confirmed and patched):
• E.g., GitHub, Trello, Vimeo, Fandom, WikiBooks and VK
• Client-side XSS, open redirections and request forgery attacks

RQ3: Defenses and their Effectiveness

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 9

Mitigations

Sanitizer
Clobbering Markups

(31.4K of RQ1)

Evaluated the robustness of 29 HTML sanitizers
• JS, Python, PHP, C#, and Java

Default Strict

Config

<a />

Output

?

Results

HTML Sanitization

In total, 16 sanitizers vulnerable to at least one clobbering markup by default
• Including popular ones like DOMPurify, Mozilla Bleach, and Google Caja
• 13 of them also vulnerable in most strict config

The other 13 sanitizers always remove named properties
• Including cases that do not lead to DOM Clobbering (e.g.,)

RQ3: Defenses and their Effectiveness

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 10

HTML Sanitization
Namespace Isolation

Mitigations Alternative: prefix/isolate named properties instead of removing them
• (+) mitigates almost all DOM Clobbering cases
• (-) may require some implementation changes by developers

Contribution: implemented namespace isolation in DOMPurify
• Use the new SANITIZE_NAMED_PROPS config

Learn more on GitHub...

See paper for
more mitigations …

?

Content Security Policy
DOM Object Freezing Namespace

Isolation

RQ3: Defenses and their Effectiveness

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 11

HTML Sanitization
Namespace Isolation
Content Security Policy
DOM Object Freezing

Mitigations

Kill Switch

Disabling DOM Clobbering

Solution: disable named properties at browser-level?1

• (+) fixes all DOM Clobbering cases
• (-) can cause breakage

Proposal to W3C:
Opt-in CSP/feature
policy flag to allow
developers to disable
name properties

Measurement

Cost: 13.3% of webpages use named properties and will break (~51% of sites)
Benefit: fixes the 491 vulnerable sites (i.e., 9.8% of top 5K sites)

breakage-benefit balance: ratio of ~5:1

Infeasible

1Source: https://github.com/w3c/webappsec-permissions-policy/issues/349

RQ3: Vulnerable Patterns and Guidelines

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 12

• Identified eight common vulnerable code patterns in the wild

#1: Explicit Variable Declarations

var VAR1 = ‘string’;

If(!API instanceof HTMLElement)

#2: Strict Type Checking

const VAR1 = ‘string’;

#3: Do Not Use Document for Globals

Patterns

1,214 webpages

var VAR2 = window.VAR1 || CONST;
SINK(VAR2);A

832 webpages

var VAR2 = [windoc.]API || CONST;
SINK(VAR2);B

655 webpages
[document.VAR1 = CONST];
SINK(document.VAR1 || CONST);C

Guidelines

RQ3: Vulnerable Patterns and Guidelines

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 13

• Identified eight common vulnerable code patterns in the wild

#1: Explicit Variable Declarations

var VAR1 = ‘string’;

If(!API instanceof HTMLElement)

#2: Strict Type Checking

const VAR1 = ‘string’;

#3: Do Not Use Document for Globals

Patterns

1,214 webpages

var VAR2 = window.VAR1 || CONST;
SINK(VAR2);A

832 webpages

var VAR2 = [windoc.]API || CONST;
SINK(VAR2);B

655 webpages
[document.VAR1 = CONST];
SINK(document.VAR1 || CONST);C

Guidelines

See paper for more! Incorporated to OWASP

Conclusion

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 14

• Clobbering markups come in many forms (i.e., 31.4K variants)

• DOM Clobbering is ubiquitous in the wild (i.e., 9.8% of sites)

• Existing defenses helpful but may not completely cut it

@Soheil__K github.com/SoheilKhodayari/TheThingdomclob.xyz

Thank You!

