
In the DOM We Trust: Exploring the Hidden Dangers of
Reading from the DOM on the Web

Jan Drescher♱, Sepehr Mirzaei*, Soheil Khodayari*, David Klein♱, Thomas BarberΦ,
Martin Johns♱, Giancarlo Pellegrino*

*CISPA - Helmholtz Center for Information Security
♱Technical University of Braunschweig

ΦSAP Security Research

CCS '25, October 13–17, 2025

The Story of Webpages: From Dynamic Interfaces to Data Repos

2

<HTML>

<Body><Head>

<title> <div>

"Hello
World"

…

● Web apps today are getting increasingly dynamic
○ Frequently update webpage content via JavaScript

○ Manipulate the Document Object Model (DOM), a tree-like page representation

<script>

3

● Web apps today are getting increasingly dynamic
○ Frequently update webpage content via JavaScript

○ Manipulate the Document Object Model (DOM), a tree-like page representation

● More recently, DOM used to also store sensitive data (e.g., one-time tokens)

<HTML>

<Body><Head>

<title> <div>

"Hello
World"

<input value="CSRF-TOKEN"> <a data-item="/api/v1/checkout">

… <script>

The Story of Webpages: From Dynamic Interfaces to Data Repos

4

<HTML>

<Body><Head>

<title> <div>

"Hello
World"

<input value="CSRF-TOKEN"> <a data-item="/api/v1/checkout">

…

fetch("/api/v1/checkout", {
 method: "POST",
 headers: { "X-CSRF-Token": "CSRF-TOKEN" },
 body: "..."
});

● Web apps today are getting increasingly dynamic
○ Frequently update webpage content via JavaScript

○ Manipulate the Document Object Model (DOM), a tree-like page representation

● More recently, DOM used to also store sensitive data (e.g., one-time tokens)

<script>

Retrieve data via DOM APIs and use in sensitive operations

The Story of Webpages: From Dynamic Interfaces to Data Repos

5

<HTML>

<Body><Head>

<title> <div>

"Hello
World"

<input value="CSRF-TOKEN"> <a data-item="/api/v1/checkout">

…

fetch("/api/v1/checkout", {
 method: "POST",
 headers: { "X-CSRF-Token": "CSRF-TOKEN" },
 body: "..."
});

● Web apps today are getting increasingly dynamic
○ Frequently update webpage content via JavaScript

○ Manipulate the Document Object Model (DOM), a tree-like page representation

● More recently, DOM used to also store sensitive data (e.g., one-time tokens)

<script>

Retrieve data via DOM APIs and use in sensitive operations
Are we validating all the read data properly

The Story of Webpages: From Dynamic Interfaces to Data Repos

6

● DOM Clobbering [IEEE SP'23, USENIX'25]

○ Inject HTML with colliding id/names, achieve code execution

Attacker Victim Vulnerable Script

 <form name="documentElement" baseURI="evil.com">

var s = document.createElement('script');
let b = document.documentElement.getAttribute('baseURI');
s.src = b + '/script.js';
document.body.appendChild(s);

Reading from DOM: Past Vulnerability Instances

7

● DOM Clobbering [IEEE SP'23, USENIX'25]

○ Inject HTML with colliding id/names, achieve code execution

Attacker Victim Vulnerable Script

● Script gadgets [CCS '17]

○ Inject HTML matching DOM selector API, achieve code execution

 <form name="documentElement" baseURI="evil.com">

var s = document.createElement('script');
let b = document.documentElement.getAttribute('baseURI');
s.src = b + '/script.js';
document.body.appendChild(s);

Attacker

<div ref=foo s.bind="$this.foo.ownerDocument.defaultView.alert(1)">

<div ref=foo s.bind="$this.foo.ownerDocument.defaultView.alert(1)">

window.alert(1)

<div> document window

Reading from DOM: Past Vulnerability Instances

8

● Exploit legitimate application JavaScript code (DOM gadgets) for malicious purposes

○ Data exfiltration

○ Cross-site Request Forgery (CSRF)

○ …

Reading from DOM: Unexplored and Diverse Attacks Beyond XSS

9

Information Leakage!

● Exploit legitimate application JavaScript code (DOM gadgets) for malicious purposes

○ Data exfiltration

○ Cross-site Request Forgery (CSRF)

○ …

Reading from DOM: Unexplored and Diverse Attacks Beyond XSS

What additional attacks can originate from unsafe DOM reads

● RQ1: Gadget Systematization

○ What types of DOM gadgets exists?

○ With what techniques can they be exploited?

10

Research Questions

● RQ1: Gadget Systematization

○ What types of DOM gadgets exists?

○ With what techniques can they be exploited?

● RQ2: Gadget Detection and Prevalence

○ How can we detect DOM gadgets? How prevalent are they?

11

Research Questions

● RQ1: Gadget Systematization

○ What types of DOM gadgets exists?

○ With what techniques can they be exploited?

● RQ2: Gadget Detection and Prevalence

○ How can we detect DOM gadgets? How prevalent are they?

● RQ3: Exploitable Gadgets and Impact

○ How many pages with DOM gadgets are truly exploitable, that is, have also a markup

injection vulnerability to trigger them?

12

Research Questions

● Identified 7 gadget variants by systematically reviewing HTML living standards & prior work

○ Known: code execution & markup injection (script gadgets)

○ New: Async. requests, WebSockets, Navigation, object loading, forms/links

13

RQ1- Gadget Systematization

● Identified 7 gadget variants by systematically reviewing HTML living standards & prior work

○ Known: code execution & markup injection (script gadgets)

○ New: Async. requests, WebSockets, Navigation, object loading, forms/links

● Each variant tied to specific sensitive instructions → distinct threats

14

RQ1- Gadget Systematization

15

RQ2- Gadget Detection and Prevalence: Methodology

16

RQ2- Gadget Detection and Prevalence: Methodology

17

RQ2- Gadget Detection and Prevalence: Methodology

18

RQ2- Gadget Detection and Prevalence: Methodology

19

RQ2- Gadget Detection and Prevalence: Methodology

20

● Collected snapshots of webpages using Playwright and an instrumented Firefox browser

RQ2- Gadget Detection and Prevalence: Results

Tranco top 15K sites, over 522K pages, 19M scripts, and 10B LoC

June 2024

21

● Collected snapshots of webpages using Playwright and an instrumented Firefox browser

● Static-dynamic detection pipeline

● Most common variants:

○ Asynchronous Request gadgets → 1.2M

○ Object gadgets → 581K

○ Script gadgets → 305K

RQ2- Gadget Detection and Prevalence: Results

 2.6M DOM gadgets on 364K pages across over 9K sites

Tranco top 15K sites, over 522K pages, 19M scripts, and 10B LoC

June 2024

● Static complements dynamic analysis

○ Dynamic analysis: scalable and low false positives, but misses condition-dependent flows

(e.g., user actions)

○ Static analysis: explores unexecuted or hard-to-reach paths → provides unique coverage

22

RQ2- Gadget Detection: Contribution of Static and Dynamic Analysis

● Static complements dynamic analysis

○ Dynamic analysis: scalable and low false positives, but misses condition-dependent flows

(e.g., user actions)

○ Static analysis: explores unexecuted or hard-to-reach paths → provides unique coverage

○ Static found at least one gadget missed by dynamic analysis:

■ Code Execution (5,081 pages)

■ Markup (11,065 pages)

■ Link (4,544 pages)

23

 Takeaway: Dynamic gives scale, static adds unique coverage

RQ2- Gadget Detection: Contribution of Static and Dynamic Analysis

● Looked for presence of input validation or sanitization checks on statically-discovered gadgets

○ 60% lacked any sanitization/validation logic

○ 10% had no checks at all

24

 Takeaway: developers trust DOM content, leaving sensitive operations unprotected

RQ2- Gadgets In the Wild: Input Validation

● Markup injection is a crucial requirement for exploiting DOM gadgets

● Methodology:

○ Used Foxhound to detect dataflows from web attacker sources like URL to markup sinks

○ Auto-generated breakout payloads to (a) attempt XSS or (b) inject script-less markup

when XSS is blocked

25

RQ3- Exploitability: Markup Injections In the Wild

● Markup injection is a crucial requirement for exploiting DOM gadgets

● Methodology:

○ Used Foxhound to detect dataflows from web attacker sources like URL to markup sinks

○ Auto-generated breakout payloads to (a) attempt XSS or (b) inject script-less markup

when XSS is blocked

● Results:

○ Discovered 204K markup injection data flows across 1.8K domains

○ Verified 4.7K markup injection flows

○ 343 verified flows do not yield XSS — they are exploitable only via DOM gadgets

26

RQ3- Exploitability: Markup Injections In the Wild

● Verification method:

○ Auto-generate matching markup, inject into the page before parsing

○ Wrap sink prototypes to log arguments when our payload reaches a sink

27

RQ3- Gadget Verification and Exploitability

● Verification method:

○ Auto-generate matching markup, inject into the page before parsing

○ Wrap sink prototypes to log arguments when our payload reaches a sink

● Verified gadgets: 357K DOM gadgets confirmed across 2,500 sites.

28

 Over 77% of verified gadgets are new gadget types (non-script gadgets)

RQ3- Gadget Verification and Exploitability

● Verification method:

○ Auto-generate matching markup, inject into the page before parsing

○ Wrap sink prototypes to log arguments when our payload reaches a sink

● Verified gadgets: 357K DOM gadgets confirmed across 2,500 sites.

● End-to-end flows: cross-referencing DOM gadgets & markup flows produced 304K candidates

29

 Over 77% of verified gadgets are new gadget types (non-script gadgets)

 657 candidates on 37 sites have both verified markup injection and verified gadget

RQ3- Gadget Verification and Exploitability

● First characterization and end-to-end detection approach for DOM gadget vulnerabilities

● Ubiquity: 70% of the analyzed pages contain at least one DOM gadget

● Novelty: 77% of detected gadgets belong to new DOM gadget variants

● Developer posture: 10% of DOM read dataflows have no validation at all

30

https://github.com/jndre/In-the-DOM-We-Trust

Summary

Questions? sepehrmirzaei98@gmail.com
jan.drescher@tu-braunschweig.de

mailto:sepehrmirzaei98@gmail.com
mailto:jan.drescher@tu-braunschweig.de

