JAW: Studying Client-side CSRF with Hybrid Property
Graphs and Declarative Traversals

Soheil Khodayari
soheil.khodayari@cispa.saarland

I
" 1ICISPA
5
Z, MHO ENTER FOR
SECURITY

« | HELMHOLTZ C
%W | INFORMATION

February 24, 2021

About Me C|CISPA

Soheil Khodayari

2"d Year PhD Student @CISPA, Germany (2019 — Present)
Research Group of Dr. Giancarlo Pellegrino
Web Security, Program Analysis

Double MSc. in Computer Science (2017-2019)

* Polytechnic University of Madrid - Technical University of Kaiserslautern
®* Previously, researcher @IMDEA

® Supervisor: Prof. Juan Caballero

Publications in NDSS, USENIX Security

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 2

Web Applications PR
* We know that webapp vulnerability detection is critical]jil\]l E -
* Over 4.8 billion websites online, 1.8 billion users [— '

* Contain a variety of security-sensitive data Banking Shopping Education

Webapp CVEs By Year 2!

* The complexity of webapps are rising.

* Problem: Existing vulnerability detection tools fall
short of capturing this complexity.

R EEEREEERREERR R

Sources:
l internetlivestats.com

2 nvd.nist.gov
Soheil Khodayari - CISPA Helmholtz Center for Information Security | 3

Cross-Site Request Forgery (CSRF) ¢|CISPA

INFORMATION SECURITY

* CSRFis an instance of the confused deputy problem

* Attackers can trick the browser to send a forged request to a target site without the victim intention.

° Defe n ses POST /login.php [..] user=Alice&pwd=secret If credentials are valid,
create and send a
200 OK session cookies

\ 4

Set-cookie: session=YBLQp32F

) Look at this
(ﬁ) cat video!

A

e Referrer/Origin Checks

GET /video.html

¢ H MAC-baSEd tOkenS J GET /change pwd.php?password=pwnd / If cookie is valid, then
. . - /> Cookie: session=YBLgp32F _ update password |
* Double submit cookie

e Custom HTTP Headers
e Same-Site Cookies

e Hard-to-guess parameter

* Synchronizer tokens

* SameSite=Lax cookies by default

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 4

Client-side CSRF: Existing Defenses Are Ineffective!

INFORMATION SECURITY

» Attacker tricks the client-side JS to send a forged request to a target site
by manipulating the program’s input parameters.

Attacker Victim Vulnerable Site Target Site

a0 _\° o . €D

1] ee
https://vuln-site.com/#target-site.com/del/profile b | ==

var uri = window.location.hash.substr (1) ;

if (uri.length > 0) {
let req = new asyncRequest ("POST", uri);
req.setBody ({'csrf token': 'xxxx'})

[...]

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 5

Challenges: Security Analysis of Webapps

* (C1) Vulnerability-specific analysis tools and techniques

* (C2)Isolated client/server-side security analysis

SICISPA

>
& | HELMHOLTZ CENTER FOR
%> | INFORMATION SECURITY

(C3) Language-specific analysis tools

* No static canonical representational model for all

®* Event-driven programming languages

(C4) Web execution environment

(C5) Modeling shared third-party code

25 Million Flows Later - Large-scale Detection of

Sebastian Lekies Ben Stock
L SAPAG

DOM-based XSS

FAU Erlangen-Nuremberg
oom h, L £ A,

Martin Johns
SAP AG

martin ink com V.

Abstract

In recent y
ticated clie
cant increas
thus, a prog
bilities, wit
impact repr
we present
DOM-based
JavaScript
as well as

A Symbolic Execution Framework for JavaScript

Prateck Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, Dawn Song
Computer Science Division, EECS Department
University of California, Berkeley
{prateeks, devdatta, sch, fmao, smcc, dawnsong}@cs.berkeley.edu

Abstry

JavaSer]
few aut
In this
executi
To han
we desi
a solver]
and app
vulneral
Kudzu

abilities
manuall

Efficient and Flexible Discovery of
PHP Application Vulnerabilities

Michael Backes*!, Konrad Rieck!, Malte Skoruppa*, Ben Stock*, Fabian Yamaguchi‘
*CISPA, Saarland University 'Max Planck Institute for Software Systems

Saarland Informatics Campus

Saarland Informatics Campus

Email: {backes, skoruppa, stock} @cs.uni-saarland.de
'

ig University of Technology
Email: {krieck, fyamaguchi}@tu-bs.de

Abstract—The Web today is a growing universe of pages and
applications teeming with interactive content. The security of
such applications is of the utmost importance, as exploits can
have a devastating impact on personal and economic levels.
‘The number one programming language in Web applications is
PHP, powering more than 80% of the top ten million websites.
Yet it was not designed with security in mind and, today,
bears a patchwork of fixes and inconsistently designed func-
tions with often unexpected and hardly predictable behavior
thot_tunically viald o 1 ttack_curface C. it

‘Web, PHP therefore constitutes a prime target for automated
security analyses to assist developers in avoiding critical
mistakes and consequently improve the overall security of
applications on the Web. Indeed, a considerable amount of
research has been dedicated to identifying vulnerable infor-
mation flows in a machine-assisted manner [15, 16, 4, 5].
All these approaches successfully identify different types
of PHP vulnerabilities in Web applications. However, all of
these approaches have only been evaluated in a controlled

i of about half a dozen projects. Therefore it is

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 6

. ° . e e, 0 -\\’ ’ C I S PA
Contributions: Revisiting the Challenges e | et
* (C1) Vulnerability-specific analysis tools and techniques /; Wﬂ_ Y
° We decouple the code representation from analysis. //h' 3'\\ i % B
° Focus on client-side CSRF, generalization to other on the way, e.g., XSS, DOM JAW: Studying Clientside CSRF with Hybrid Property Graphs

and Declarative Traversals

clobbering, etc.
Soheil Khodayari Giancarlo Pellegrino

CISPA Helmholtz Center CISPA Helmholtz Center

for Information Security for Information Security

Abstract

(C3) Language-specific analysis tools

° Hybrid Property Graphs (HPGs), canonical representation for JS + Event-Driven
paradigm

° Support for other languages on the way, e.g., Python, PHP, etc.

To be appeared in USENIX Security’21

(C4) Web execution environment

° HPGs capture the dynamics of the execution env via snapshots of the web env
(e.g., DOM trees) and traces of JS events

(C5) Modeling shared third-party code

° We generate reusable symbolic models of external libraries.

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 7

Contributions

* Presented JAW, a framework that detects
client-side CSRF by instantiating a HPG for
each web page.

* Evaluated JAW with 228M LoC of 106
popular applications from the Bitnami
catalog.

* First systematic study of client-side CSRF and
taxonomy of forgeable client-side requests.

* |dentified 12,701 forgeable requests
affecting 87 applications.

" ICISPA

& | HELMHOLTZ CENTER FOR
1N INFORMATION SECURITY

23

JAW: Studying Client-side CSRF with Hybrid Property Graphs
and Declarative Traversals

Soheil Khodayari
CISPA Helmholtz Center
for Information Security

Abstract

Client-side CSRF is a new type of CSRF vulnerability
where the adversary can trick the client-side JavaScript pro-
gram to send a forged HTTP request to a vulnerable target site
by modifying the program’s input parameters. We have little-
to-no knowledge of this new vulnerability, and exploratory
security evaluations of JavaScript-based web applications are
impeded by the scarcity of reliable and scalable testing tech-
niques. This paper presents JAW, a framework that cnables the
analysis of modern web applications against client-side CSRF
leveraging declarative traversals on hybrid property graphs, a
canonical, hybrid model for JavaScript programs. We use JAW

Giancarlo Pellegrino
CISPA Helmholtz Center
Sfor Information Security

for and avoiding the inclusion of HTTP cookies in cross-site
requests (see, e.g., [28, 29)). In the client-side CSRE, the vul-
nerable component is the JavaScript program instead, which
allows an attacker to generate arbitrary requests by modifying
the input parameters of the JavaScript program. As opposed
to the traditional CSRE, existing anti-CSRF countermeasures
(see, e.g., [28, 29, 34]) are not sufficient to protect web appli-
cations from client-side CSRF attacks.

Client-side CSRF is very new—with the first instance af-
fecting Facebook in 2018 [24}—and we have little-to-no
knowledge of the vulnerable behaviors, the severity of this
new flaw, and the exploitation landscape. Studying new vul-

ties is not an casy task, as it requires the collection and

to evaluate the of client-side CSRF
ties among all (i.c., 106) web applications from the Bitnami
catalog, covering over 228M lines of JavaScript code. Our ap-
proach uncovers 12,701 forgeable client-side requests affect-
ing 87 web applications in total. For 203 forgeable requests,
we successfully created client-side CSRF exploits against
seven web applications that can execute arbitrary server-side

analysis of hundreds of web pages per real web applications.
Unfortunately, such analyses are primarily impeded by the
searcity of reliable and scalable tools suitable for the detection
and analysis of vulnerable JavaScript behaviors.

In general, studying client-side CSRF vulnerabilities in
JavaScript-based web applications is not an easy task. First,

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 8

https://soheilkhodayari.github.io/JAW

SemTypes

JAW: Data Collection ;|CISPA

o | HELMHOLTZ CENTER FOR

e Chrome-based crawler with Selenium

Seed URL - Data Collection

. . Code
* Enhanced with chrome extensions —> Data
(Test Case) Crawler ———bE State Values
 Outputs: X T
iTlT HTTP(S)

» JavaScript Code q

 HTTP Requests and Responses R
* Dynamically Fired Events

» Concrete snapshots of the global Window object
* window.document (DOM tree) — Dynamic Information
* window.localStorage

» window.document.cookie

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 10

Symbolic
Modeling

SemTypes
S

Hybrid Property Graphs (HPGs): Building Blocks

* Code Representation

Abstract Syntax Tree (AST)

Control Flow Graph (CFG) CPG for C/C++
Program Dependence Graph (PDG) [Yamaguchi, S&P"14]
Inter-Procedural Call Graph (IPCG)

Event Registration, Dispatch and Dependency Graph (ERDDG)

Semantic Types and Symbolic Models

* State Values

Event Traces

Environment Properties

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 12

CISPA

, & | HELMHOLTZ CENTER FOR
AW | INFORMATION SECURITY

CPG for PHP

[Bakes et al.,

EuroS&P’17]

Event Registration, Dispatch and Dependency Graph C|CISPA

INFORMATION SECURIT)

* Problem: when an event is dispatched, one or more
registered functions are executed

®* Can change the state of the program [

* Register new handlers btn.click() J

Event: click,
Key: btn,
Type: dispatch

®* Fire new events
* Solution: the ERDDG

L btn.addEventListener('click’, h) J

Event: click,
- btn = document.querySelector(fwmm. _
ype: registration,
unction h (e) { Activated: true
new AsyncRequest(...);
| 4 E () [function h(e){ ... }]
btn.addEventListener(Lol Event: click,
Key: btn,

Type: dependency

btn.click();
(new AsyncRequesty(...)]

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 13

Symbolic Models

External libraries: over 60% of the total LoC of each webpage.
Problem:

* Existing approaches: Inefficient, include library code in the analysis

Goal: Shared library code can be modeled once and re-used.

®* Extract a symbolic model from each library and use it as a proxy.

* |The symbolic model is an assignment of a label to library constructs.

Example:

\"]
S rd

EEEEEEEEEEEEEEEEEEE
NNNNNNNNNNNNNNNNNNNN

&

jauery

—> Semantic Types

i for all functions that send HTTP requests, e.g., “asyncRequest” of YUl library

* “WIN.LOC” for library functions consuming “window.location”

* “WEB-STORAGE” for library functions consuming “localStorage/sessionStorage”

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 14

-
Symbolic Models (Cont’d) C|CISPA

NNNNNNNNNNNNNNNNNN

* To reconstruct the data flow of programs that use library functions, we
define two semantic types:

* Type “o<---i": function(i){ return o =g(i); }

* Type“o~ 1" function(i){ if(cond(i)) return o; }

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 15

JAW: Approach Overview ol SR

A. Data Collection (V)
B. Graph Construction)
C. Analysis Traversals

Seed URL Data Collection Code HPG Construction Traversals I T Result
o > : . :
: Data . . Cod o Lib Lib Svmboli ¥ aaissaslasan
. . : ode ibrary : ymbolic . : .
: [: @i L=] : Analysis
(Test Case) : Gevils E M Normalization Detection Modeling : HPG - ¥
¢ gt Wv—— : : ' = il
‘LTLT HTTP(S) : State Values Code g == =~ Symbolic Model
P e > : SESEmES s
SemTypes : SemTypes c I-t[PG s | I E : . :
l o > & — = — — — | Construction e J U .

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 16

Example: Hybrid Property Graphs

Code Repr.
(Static Part)

State Values
(Dynamic Part)

—_

L10 L4

/

Act. Evt. Reg.

F_DECL F —

SICISPA

[prodPr] [input_id J [

z
Zuas® | INFORMATION SECORITY
» Exit
EXP_STMT O
BLock | - cExp |

(MMBREXP | ‘Toadmnvoice’)

[ﬁddEventListener

Evt Disp.

—C— EXP_STMT
- -D eq
ui D‘ ri ¢ 7 D“ q N RN . \
! L3 L4 \‘v/' L5 N\ L7 \’/ L8 N L9
(varpecL |~ wmstmr J " varbecL | { ceExe) varDECL | { EXP.STMT | MMBR_EXP NEW_EXP
G) (e) dspasantvent) [) toadineoice [17)
o T et R getElementByld(input_id)
window.location.hash N_ e
S
NS
i e t t
= n s nex next N
T window | — O—= 0O
i - \\ E1: DOMContentLoaded E2: UIEvent Load E3: Event loadInvoice
“{ document ‘ location localStorage ‘ sessionStorage ‘ name Target: document Target: window Target: <input id="input'>
Event ! next f\ next
‘ #document H referer ‘ cookie Traces: —

E4: Event load

‘Target: asyncRequest
example.com/x
X-CSRF-Token=A3XgT2

<html> ‘

| <input id="input'>

E4: Event load

Target: XMLHttpRequest
example.com/y

No payload

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 17

Traversals I T Result

HPG Analysis

fee HF : S ICISPA
Analysis: Vulnerability Detection e |t
* Client-side CSRF
. 1 l@l |window. location. hashl
A. Data flow from an attacker-controlled input to a 2. [fetcn donainl <
parameter of a request R. 2 fui] M;;;Ii:;;;:;:;::sﬂ
3. |xhr uri <-
* lines of code having both “WIN.LOC” and e
semantic types. 3 & R e on:baet
. Y <-
B. Risreachable at page load. 6 q |@-| . _

* Model both conditions using declarative traversals

* A guery Q contains all nodes n of HPG for which a predicate Pistrue: Q = {n : P(n)}

0, ={n : isDeclOrStmt(n) A 3Icl, c2, cl != c2
A hasChild(n, cl) A hasSemType(cl,),
A hasChild(n, c2) A hasSemType(c2, “WIN.LOC")

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 19

Evaluation: Experimental Setup N pAtA
* Tested all webapps (i.e., 106) from the Bitnami catalog 0
* Ready-to-deploy containers of preconfigured web applications. bitnami

* Why Bitnami? @ g
® Popularity vmware

° Diversity

° Use by prior work [Pellegrino et al., CCS’17]

®* For each webapp, we created:

° One user account for each supported levels of privilege.

° A Selenium state script to perform the login. QSelenium
* A total of 136 scripts, 1-5 per webapp

* |nstantiated JAW against each webapp by inputing a single seed URL. ”

23

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 20

: . SICISPA
Evaluation: Forgeable Requests N e
* Atotal of 12,701 forgeable requests
Sources Forgeable | Apps
° Exploitations: DOM. COOKIES 67 5
DOM.READ 12,268 83
* Manually looked for practical exploitations in 516 requests: *-STORAGE 76 8
DOC.REFERRER 1 1
° Selected all requests across all groups, except for “DOM.READ” type. g?;TgﬁgSA@E ?13 fl‘
* for “DOM.READ”, we focused on one randomly selected request per WIN.LOC 280 12
webapp. Total forgeable 12,701 87
Non-reachable code 36,665 101
Total 49366 | 106

* Created a working exploit for 203 forgeable requests affecting seven

web applications:
. SuiteCRM, SugarCRM, Neos, Kibana, Modx, Odoo, Shopware p Exﬁn *

* Account takeover, deleting user assets, executing malicious queries, etc.

* All exploits use data values of WIN.LOC, that can be forged by any web
attacker.

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 21

- __
CISPA

HELMHOLTZ CENTER FOR
INFORMATION SECURITY

\\”

Evaluation: Analysis of Forgeable Requests

* Exploitation landscape can be influenced by: Dom.Putn Guery Body | Part Control | Reas - Apps
v One -, A, - 16 11
* Degree of attacker’s control on forgeable requests A il Sl YA
y Tl wo il om
v One -, A, - 7 7
v One -, - P 6 6
. .« o . . v One - =+ P 11 11
* Intotal, identified 25 distinct templates ¢ A L I
. . . v v Mult w: A: P 6 1
* The majorlty of webapps use only one (|.e.-, 68 apps) or AR L N N R
two (i.e., 17 apps) templates across all their webpages p M I IS
AN AN I
v Mult -, -, P 6 6
v Mult W, -, - 28 8
. v v n ;= -

* Request Fields: . v Ay ho | oms s
v v v v Azy g, :, : (*)i i
* Intotal, 55, 34, and 12 webapps allow modifying one, ol w2 2
. . v v v An W, -, - 1 1

more than one, and all fields, respectively. Tegend AR g PP WoWHg

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 22

\"]

JAW Is Only the First Step. What’s Next? ¢|CISPA

EEEEEEEEEEEEEEEEEEE
||||||||||||||||||||

(C1) Vulnerability-specific analysis tools and techniques
* Support for additional vulnerability classes on the way. @

* (C2)Isolated client/server-side security analysis

®* Web Property Graphs (WPGs)

° Connecting the client-side to the server-side program in the property graph.

* (C3) Language-specific analysis tools

®* Support for other programming languages on the way. o= '@
* Language-agnostic property graphs, requires UAST.

* (C4) Web execution environment

* (C5) Modeling shared code

* Incremental Static Analysis

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 23

Conclusion

Client-side CSRF: Existing Defenses Are Ineffective! J|SISPA

* Attacker tricks the client-side JS to send a forged request to a target site
by manipulating the program’s input parameters.

Attacker Victim

a0 @ ()

Vulnerable Site Target Site

>
https://vuln-site.com/#target-site.com/del/profile Lo

O https://soheilkhodayari.github.io/JAW

JAW: Approach Overview

A. Data Collection
B. Graph Construction
C. Analysis Traversals

CISPA

HELMHOLTZ CENTER FOR
INFORMATION SECURITY

vaermlv Resuk L

SeedURL :DataCollection " coge “ HPG Construction
Data — Code Libr Lib. Symboli
® N I e — e N S e R
— e
[TTT— st 7 i
SemTypes St -
B e - Grapn
1
H CISPA
. . Evaluation: Forgeable Requests G | ipet
Example: Hybrid Property Graphs LISISPA
* Atotal of 12,701 forgeable requests
Sources Forgeable | Apps
* Exploitations: 5
ooy - 8
r Ty o) et Fe o * Manually looked for practical exploitations in 516 requests: H
o o (o)_mox predr dpusd ik o * Selected all requests across all groups, except for “DOM.READ” type. H
Sem—— * for “DOM.READ”, we focused on one randomly selected request per 2
Code Repr. J webapp. -
(Static Part) 06

State Values
(Dynamic Part) —

* Created a working exploit for 203 forgeable requests affecting seven
web applications:
* SuiteCRM, SugarCRM, Neos, Kibana, Modx, Odoo, Shopware
* Account takeover, deleting user assets, executing malicious queries, etc.

* All exploits use data values of WIN.LOC, that can be forged by any web
attacker.

