
JAW: Studying Client-side CSRF with Hybrid Property
Graphs and Declarative Traversals

Soheil Khodayari
soheil.khodayari@cispa.saarland

February 24, 2021

Soheil Khodayari
2nd Year PhD Student @CISPA, Germany (2019 – Present)
Research Group of Dr. Giancarlo Pellegrino
Web Security, Program Analysis

Double MSc. in Computer Science (2017-2019)
• Polytechnic University of Madrid - Technical University of Kaiserslautern

• Previously, researcher @IMDEA

• Supervisor: Prof. Juan Caballero

Publications in NDSS, USENIX Security

About Me

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 2

• We know that webapp vulnerability detection is critical
• Over 4.8 billion websites online, 1.8 billion users [1]

• Contain a variety of security-sensitive data

• The complexity of webapps are rising.
• Problem: Existing vulnerability detection tools fall

short of capturing this complexity.

Web Applications

Sources:
1 internetlivestats.com
2 nvd.nist.gov

Banking Shopping Education

Webapp CVEs By Year [2]

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 3

• CSRF is an instance of the confused deputy problem
• Attackers can trick the browser to send a forged request to a target site without the victim intention.

• Defenses
• Referrer/Origin Checks
• Hard-to-guess parameter

• Synchronizer tokens

• HMAC-based tokens

• Double submit cookie

• Custom HTTP Headers
• Same-Site Cookies

• SameSite=Lax cookies by default

Cross-Site Request Forgery (CSRF)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 4

• Attacker tricks the client-side JS to send a forged request to a target site
by manipulating the program’s input parameters.

Client-side CSRF: Existing Defenses Are Ineffective!

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 5

• (C1) Vulnerability-specific analysis tools and techniques

• (C2) Isolated client/server-side security analysis

• (C3) Language-specific analysis tools

• No static canonical representational model for all languages, e.g., JavaScript

• Event-driven programming languages

• (C4) Web execution environment

• (C5) Modeling shared third-party code

Challenges: Security Analysis of Webapps

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 6

• (C1) Vulnerability-specific analysis tools and techniques
• We decouple the code representation from analysis.

• Focus on client-side CSRF, generalization to other on the way, e.g., XSS, DOM
clobbering, etc.

• (C2) Isolated client/server-side security analysis
• (C3) Language-specific analysis tools

• Hybrid Property Graphs (HPGs), canonical representation for JS + Event-Driven
paradigm

• Support for other languages on the way, e.g., Python, PHP, etc.

• (C4) Web execution environment
• HPGs capture the dynamics of the execution env via snapshots of the web env

(e.g., DOM trees) and traces of JS events

• (C5) Modeling shared third-party code
• We generate reusable symbolic models of external libraries.

Contributions: Revisiting the Challenges

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 7

To be appeared in USENIX Security’21

• Presented JAW, a framework that detects
client-side CSRF by instantiating a HPG for
each web page.

• Evaluated JAW with 228M LoC of 106
popular applications from the Bitnami
catalog.

• First systematic study of client-side CSRF and
taxonomy of forgeable client-side requests.
• Identified 12,701 forgeable requests

affecting 87 applications.

Contributions

https://soheilkhodayari.github.io/JAW

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 8

A. Data Collection
B. Graph Construction
C. Analysis Traversals

JAW: Approach Overview

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 9

• Chrome-based crawler with Selenium
• Enhanced with chrome extensions
• Outputs:

• JavaScript Code
• HTTP Requests and Responses
• Dynamically Fired Events
• Concrete snapshots of the global Window object

• window.document (DOM tree)
• window.localStorage
• window.document.cookie
• …

JAW: Data Collection

Dynamic Information

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 10

A. Data Collection
B. Graph Construction
C. Analysis Traversals

JAW: Approach Overview

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 11

• Code Representation
• Abstract Syntax Tree (AST)

• Control Flow Graph (CFG)

• Program Dependence Graph (PDG)

• Inter-Procedural Call Graph (IPCG)

• Event Registration, Dispatch and Dependency Graph (ERDDG)

• Semantic Types and Symbolic Models

• State Values
• Event Traces

• Environment Properties

Hybrid Property Graphs (HPGs): Building Blocks

CPG for C/C++
[Yamaguchi, S&P’14]

CPG for PHP
[Bakes et al., EuroS&P’17]

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 12

Event Registration, Dispatch and Dependency Graph

• Problem: when an event is dispatched, one or more
registered functions are executed
• Can change the state of the program

• Register new handlers

• Fire new events

• Solution: the ERDDG

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 13

Symbolic Models

• External libraries: over 60% of the total LoC of each webpage.
• Problem:

• Existing approaches: Inefficient, include library code in the analysis

• Goal: Shared library code can be modeled once and re-used.
• Extract a symbolic model from each library and use it as a proxy.

• The symbolic model is an assignment of a label to library constructs.

• Example:
• “REQ” for all functions that send HTTP requests, e.g., “asyncRequest” of YUI library

• “WIN.LOC” for library functions consuming “window.location”
• “WEB-STORAGE” for library functions consuming “localStorage/sessionStorage”

Semantic Types

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 14

Symbolic Models (Cont’d)

• To reconstruct the data flow of programs that use library functions, we
define two semantic types:

• Type “o < --- i”: function(i){ return o = g(i); }

• Type “o ∼ i” function(i){ if(cond(i)) return o; }

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 15

A. Data Collection
B. Graph Construction
C. Analysis Traversals

JAW: Approach Overview

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 16

Example: Hybrid Property Graphs

Code Repr.
(Static Part)

State Values
(Dynamic Part)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 17

A. Data Collection
B. Graph Construction
C. Analysis Traversals

JAW: Approach Overview

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 18

Analysis: Vulnerability Detection

• Client-side CSRF
A. Data flow from an attacker-controlled input to a

parameter of a request R.
• lines of code having both “WIN.LOC” and “REQ”

semantic types.

B. R is reachable at page load.

• Model both conditions using declarative traversals

QA ={n : isDeclOrStmt(n) ∧ ∃c1, c2, c1 != c2
∧ hasChild(n, c1) ∧ hasSemType(c1, “REQ”),
∧ hasChild(n, c2) ∧ hasSemType(c2, “WIN.LOC”)

}

Q = {n : P(n)}• A query Q contains all nodes n of HPG for which a predicate P is true:

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 19

Evaluation: Experimental Setup

• Tested all webapps (i.e., 106) from the Bitnami catalog
• Ready-to-deploy containers of preconfigured web applications.
• Why Bitnami?

• Popularity

• Diversity
• Use by prior work [Pellegrino et al., CCS’17]

• For each webapp, we created:

• One user account for each supported levels of privilege.
• A Selenium state script to perform the login.

• A total of 136 scripts, 1-5 per webapp

• Instantiated JAW against each webapp by inputing a single seed URL.

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 20

Evaluation: Forgeable Requests

• A total of 12,701 forgeable requests
• Exploitations:

• Manually looked for practical exploitations in 516 requests:
• Selected all requests across all groups, except for “DOM.READ” type.

• for “DOM.READ”, we focused on one randomly selected request per
webapp.

• Created a working exploit for 203 forgeable requests affecting seven
web applications:

• SuiteCRM, SugarCRM, Neos, Kibana, Modx, Odoo, Shopware
• Account takeover, deleting user assets, executing malicious queries, etc.

• All exploits use data values of WIN.LOC, that can be forged by any web
attacker.

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 21

Evaluation: Analysis of Forgeable Requests

• Exploitation landscape can be influenced by:
• Degree of attacker’s control on forgeable requests

• In total, identified 25 distinct templates
• The majority of webapps use only one (i.e., 68 apps) or

two (i.e., 17 apps) templates across all their webpages

• Request Fields:
• In total, 55, 34, and 12 webapps allow modifying one,

more than one, and all fields, respectively.

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 22

• (C1) Vulnerability-specific analysis tools and techniques
• Support for additional vulnerability classes on the way.

• (C2) Isolated client/server-side security analysis

• Web Property Graphs (WPGs)
• Connecting the client-side to the server-side program in the property graph.

• (C3) Language-specific analysis tools

• Support for other programming languages on the way.

• Language-agnostic property graphs, requires UAST.

• (C4) Web execution environment

• (C5) Modeling shared code
• Incremental Static Analysis

JAW Is Only the First Step. What’s Next?

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 23

Conclusion https://soheilkhodayari.github.io/JAW

Thank

You!

