

JAW: Studying Client-side CSRF with Hybrid Property Graphs and Declarative Traversals

Soheil Khodayari soheil.khodayari@cispa.saarland

About Me

Soheil Khodayari

2nd Year PhD Student @CISPA, Germany (2019 – Present) Research Group of Dr. Giancarlo Pellegrino Web Security, Program Analysis

Double MSc. in Computer Science (2017-2019)

- Polytechnic University of Madrid Technical University of Kaiserslautern
- Previously, researcher @IMDEA
- Supervisor: Prof. Juan Caballero

Publications in NDSS, USENIX Security

Web Applications

- We know that webapp vulnerability detection is critical
 - Over 4.8 billion websites online, 1.8 billion users ^[1]
 - Contain a variety of security-sensitive data

- The complexity of webapps are rising.
 - **Problem:** Existing vulnerability detection tools fall short of capturing this complexity.

Banking Shopping Education

Webapp CVEs By Year ^[2]

19,000

17,000 -16,000 -15,000 -14,000 -

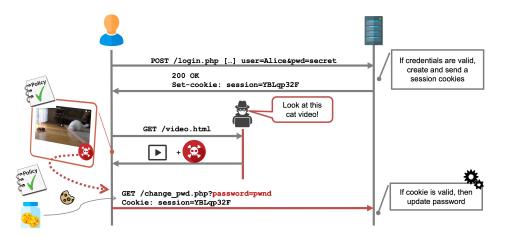
13,000

11,000 -10,000 -9,000 -8,000 -7,000 -6,000 -5,000 -4,000 -3,000 -

Sources:

¹ internetlivestats.com

and the star and and the star and and and


² nvd.nist.gov

Cross-Site Request Forgery (CSRF)

- CSRF is an instance of the confused deputy problem
 - Attackers can trick the browser to send a forged request to a target site without the victim intention.

- Defenses
 - Referrer/Origin Checks
 - Hard-to-guess parameter
 - Synchronizer tokens
 - HMAC-based tokens
 - Double submit cookie
 - Custom HTTP Headers
 - Same-Site Cookies
 - SameSite=Lax cookies by default

Client-side CSRF: Existing Defenses Are Ineffective!

• Attacker tricks the client-side JS to send a forged request to a target site by manipulating the program's input parameters.

Challenges: Security Analysis of Webapps

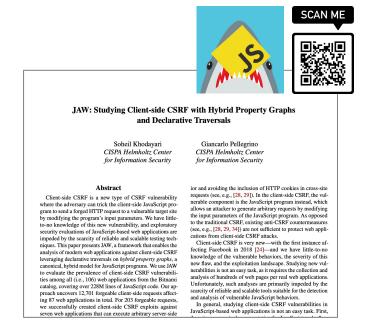
- (C1) Vulnerability-specific analysis tools and techniques
- (C2) Isolated client/server-side security analysis
- (C3) Language-specific analysis tools
 - No static canonical representational model for all
 - Event-driven programming languages
- (C4) Web execution environment
- (C5) Modeling shared third-party code

ique	S			
:	25 Mil	ion Flows Later - DOM-ba	Large-scale D ased XSS	Petection of
se	SA	an Lekies Ber P AG FAU Erlang kies@san.com_bon.stock	en-Nuremberg	Martin Johns SAP AG n Johns/@san.com
Abstract In recent ye ticated clier cant increas thus, a prop bilities, witl impact repr		Prateek Saxena, Devdatta Akh Compu	Execution Frameworl awe, Steve Hanna, Feng Mao, ter Science Division, EECS D University of California, Berk tu, sch, finao, smcc, dawnson	Stephen McCamant, Dawn Song epartment iley
we present a DOM-based JavaScript o as well as a	Abstra JavaScr few auto In this executio To hand we desig a solver and app vulneral Kudzu a abilities	Michael Backes *CISPA	Efficient and Fle PHP Applicatio * [†] , Konrad Rieck [‡] , Malte Saarland University [†] Ma Informatics Campus	xible Discovery of n Vulnerabilities Skoruppa*, Ben Stock*, Fabian Yamaguchi [‡] <i>Planck Institute for Software Systems</i> <i>Saarland Informatics Campus</i> <i>stock</i>)@c.suni-saarland de
	manual	Abstract—The Web today is a gr applications teeming with intera- such applications is of the utmos- have a devastating impact on p The number one programming la PHP, powering more than 80% o Yet it was not designed with s bears a patchwork of fixes and tions with often unexpected and that twicelus sided a lacen atta	¹ Braunschweig ¹ Un Email: {k.rieck, fyy owing universe of pages and tive content. The security of t importance, as exploits can ersonal and economic levels. nguage in Web applications is the top ten million websites. currity in million dad, today, inconsistently designed func- hardly predictable behavior	Stock, We:S. uni-startmad.ae versity of Technology unaguchi}@tu-bs.de Web, PHP therefore constitutes a prime target for automated security analyses to assist developers in avoiding critical mistakes and consequently improve the overall security of applications on the Web. Indeed, a considerable amount of research has been dedicated to identifying vulnerable infor- mation flows in a machine-assisted manner [15, 16, 4, 5]. All these approaches successfully identify different types of PHP vulnerabilities in Web applications. However, all of these approaches have only been evaluated in a controlled environment of about half a dozen projects. Therefore it is

Contributions: Revisiting the Challenges

- **(C1)** Vulnerability-specific analysis tools and techniques
 - We decouple the code representation from analysis.
 - Focus on client-side CSRF, generalization to other on the way, e.g., XSS, DOM clobbering, etc.
- (C2) Isolated client/server-side security analysis
- **(C3)** Language-specific analysis tools
 - Hybrid Property Graphs (HPGs), canonical representation for JS + Event-Driven paradigm
 - Support for other languages on the way, e.g., Python, PHP, etc.
- (C4) Web execution environment
 - HPGs capture the dynamics of the execution env via snapshots of the web env (e.g., DOM trees) and traces of JS events
- (C5) Modeling shared third-party code
 - We generate reusable symbolic models of external libraries.

	F with Hybrid Property Graphs
Soheil Khodayari CISPA Helmholtz Center for Information Security	Giancarlo Pellegrino CISPA Helmholtz Center for Information Security
Abstract Client-side GSRF is a new type of CSRF vulnerability where the adverses can trick the client-side JavaScript pro- gram to nead a forged HTTP request to a vulnerability and worklying the program's input parameters. We have little to a knowledge of this new vulnerability, and exploratory impleded by the scarcity of reliable and achieves the napars. This paper presents JAVA, a framework that enables the maphysis of moders we applications gainst client-side CSRF consortial, hybrid model for JavaScript programs. We are JAVA evaluate the preventee of client-side CSRF vulnerabili- ties and client side CSRF vulnerability test anong all (i.e., 100) web applications from the Bitmani studies, covering work22MB lines of JavaScript rocked. Type JavaScript web and the study of the JavaScript programs. We are JAVA to a study of the JavaScript programs. We are JAVA to a study of the JavaScript programs. We are JAVA to a study of the study of the JavaScript programs. We are JAVA to a study of the study of the JavaScript programs. We are JAVA to a study of the JavaScript programs. We are JAVA to a study of the JavaScript programs. We are JAVA to a study of the JavaScript programs. We are JAVA to a study of the JavaScript programs. We are JAVA to a study of the JavaScript programs. We are JAVA to a study of the JavaScript programs. We are JAVA to a study of the JavaScript programs. We are JAVA to a study of the JavaScript programs. We are JAVA to a study of the JavaScript programs. We are JAVAA to a study of the JavaScript programs. We are JAVAA to a study of the JavaScript programs. We are JAVAA to a study of the JavaScript programs. We are JAVAA to a study of the JavaScript programs. We are JAVAA to a study of the JavaScript programs. We are JAVAA to a study of the JavaScript programs. We are JAVAA to a study of the JavaScript programs. We are JAVAA to a study of the JavaScript programs. We are JAVAA to a study of the JavaScript programs. We are JAVAA to a study of the JavaScript pr	ter and avoiding the inclusion of HTTP cookies in cross-site requests (see, e.g., [28, 29]). In the citeris-side CSRF, the vul- nerable component in the JavaScript program instead, which allows an attacker to generate abstrary requests by modifying the second second second second second second second transformed and the second second second second second term forming criterio SCRF attacks. CRF contentraseuros (see, e.g., [28, 29, 34]) are not sufficient to protect two septi- ciations from clience side CSRF attacks. CRF attacks. CRF second second second second second second second new flave, and the capitation inducione. Studying new vul- nerabilities in our any study, as in regulate the collection attaches analysis of frameworks of weak pages per rate web applications matching on classical second second second second second analysis of frameworks of weak pages per rate web applications searcing of results and scalable tools simulate for the detection analysis of matches of weak pages per rate web applications searcing of results and scalable tools simulated for the detection analysis of the second scalable tools simulated for the detection searcing of results and scalable tools simulated for the detection searcing scalable scalable tools simulated for the detection scalable tools simulated scalable scalable tools simulated for the detection scalable tool simulated fore the detection scalab

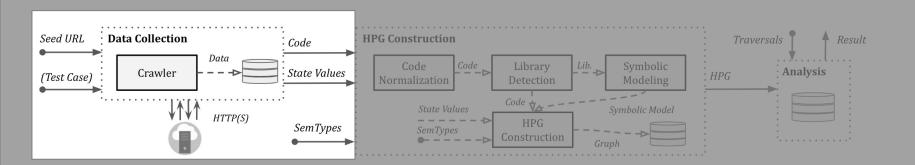

To be appeared in USENIX Security'21

ing 87 web applications in total. For 203 forgeable requests,

we successfully created client-side CSRF exploits against

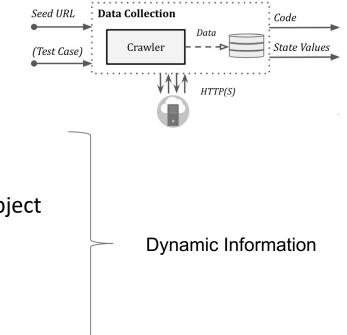
Contributions

- Presented JAW, a framework that detects client-side CSRF by instantiating a HPG for each web page.
- Evaluated JAW with 228M LoC of 106 popular applications from the Bitnami catalog.
- First systematic study of client-side CSRF and taxonomy of forgeable client-side requests.
 - Identified 12,701 forgeable requests affecting 87 applications.



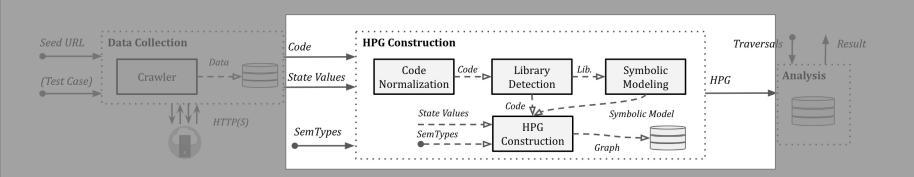
https://soheilkhodayari.github.io/JAW

JAW: Approach Overview



- A. Data Collection
- B. Graph Construction
- C. Analysis Traversals

JAW: Data Collection

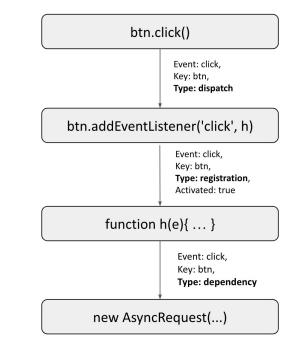

- Chrome-based crawler with Selenium
- Enhanced with chrome extensions
- Outputs:
 - JavaScript Code
 - HTTP Requests and Responses
 - Dynamically Fired Events
 - Concrete snapshots of the global Window object
 - window.document (DOM tree)
 - window.localStorage
 - window.document.cookie
 - ...

JAW: Approach Overview

- A. Data Collection
- B. Graph Construction
- C. Analysis Traversals

Hybrid Property Graphs (HPGs): Building Blocks

- Code Representation
 - Abstract Syntax Tree (AST)
 - Control Flow Graph (CFG)
 - Program Dependence Graph (PDG)
 - Inter-Procedural Call Graph (IPCG)
 - Event Registration, Dispatch and Dependency Graph (ERDDG)
 - Semantic Types and Symbolic Models
- State Values
 - Event Traces
 - Environment Properties


CPG for C/C++ [Yamaguchi, S&P'14]

CPG for PHP [Bakes et al., EuroS&P'17]

Event Registration, Dispatch and Dependency Graph

- **Problem:** when an event is dispatched, one or more registered functions are executed
 - Can change the state of the program
 - Register new handlers
 - Fire new events
- Solution: the ERDDG

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 14

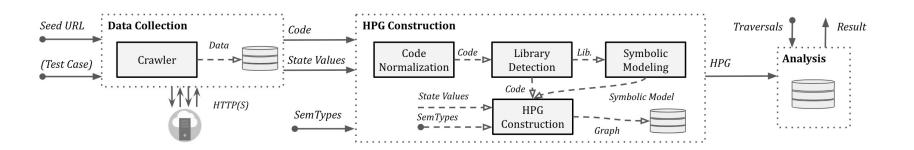
- External libraries: over 60% of the total LoC of each webpage. ٠
- **Problem:** •

Symbolic Models

- Existing approaches: Inefficient, include library code in the analysis
- **Goal:** Shared library code can be modeled once and re-used. ٠
 - Extract a symbolic model from each library and use it as a proxy.
 - The symbolic model is an assignment of a label to library constructs. ٠
- Example: •
 - "REQ" for all functions that send HTTP requests, e.g., "asyncRequest" of YUI library
 - "WIN.LOC" for library functions consuming "window.location" ٠
 - "WEB-STORAGE" for library functions consuming "localStorage/sessionStorage"

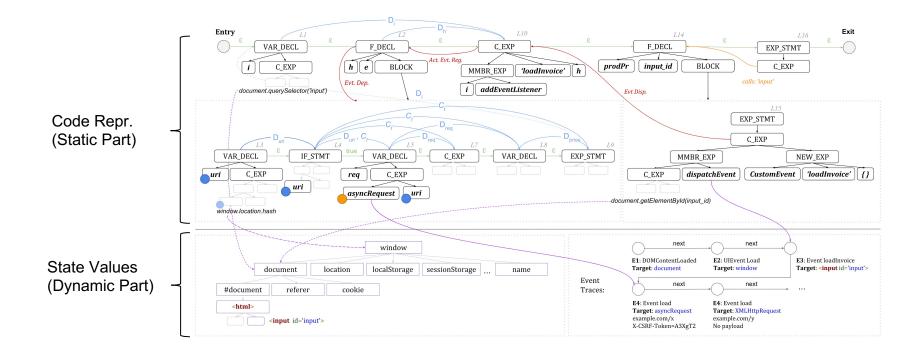
Semantic Types

Symbolic Models (Cont'd)



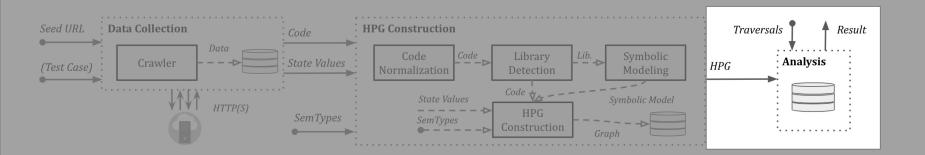
- To reconstruct the data flow of programs that use library functions, we define two semantic types:
 - Type "o < --- i": function(i){ return o = g(i); }
 - Type "o ~ i" function(i){ if(cond(i)) return o; }

JAW: Approach Overview



- A. Data Collection
- B. Graph Construction 🗸
- C. Analysis Traversals

Example: Hybrid Property Graphs



JAW: Approach Overview

- A. Data Collection
- B. Graph Construction 🗸
- C. Analysis Traversals

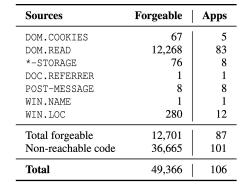
Analysis: Vulnerability Detection

- Client-side CSRF
 - A. Data flow from an attacker-controlled input to a parameter of a request <u>R</u>.
 - lines of code having both "WIN.LOC" and "REQ" semantic types.
 - B. <u>R</u> is reachable at page load.
- Model both conditions using declarative traversals
 - A query Q contains all nodes n of HPG for which a predicate P is true: $Q = \{n : P(n)\}$

1	<pre>1. var domain = validate domain (window.location.h 2. fetch("https://" + domain + "/"); <-</pre>	ash);
2	<pre>1. var uri = window.location.hash; 2. var xhr = new XMLHttpRequest(); 3. xhr.open("GET", uri); <- 4. xhr.send();</pre>	
3	<pre>1. var uri = validate uri (window.location.hash); 2. var xhr = new extLibraryHttpRequest(); 3. let a = [xhr]; // alias 4. a open (`POST", [uri]); <- 5. var q = window.location.search; 6. a send (`ql="+q]substr(1,10)+ ``&q2="+q]substr(1)</pre>	1); <-

Evaluation: Experimental Setup

- Tested all webapps (i.e., 106) from the Bitnami catalog
 - Ready-to-deploy containers of preconfigured web applications.
 - Why Bitnami?
 - Popularity
 - Diversity
 - Use by prior work [Pellegrino et al., CCS'17]
 - For each webapp, we created:
 - One user account for each supported levels of privilege.
 - A Selenium state script to perform the login.
 - A total of 136 scripts, 1-5 per webapp
 - Instantiated JAW against each webapp by inputing a single seed URL.



Evaluation: Forgeable Requests

- A total of 12,701 forgeable requests
- Exploitations:
 - Manually looked for practical exploitations in 516 requests:
 - Selected all requests across all groups, except for "DOM.READ" type.
 - for "DOM.READ", we focused on one randomly selected request per webapp.

- Created a working exploit for 203 forgeable requests affecting seven web applications:
 - SuiteCRM, SugarCRM, Neos, Kibana, Modx, Odoo, Shopware
 - Account takeover, deleting user assets, executing malicious queries, etc.
 - All exploits use data values of WIN.LOC, that can be forged by any web attacker.

Evaluation: Analysis of Forgeable Requests

- Exploitation landscape can be influenced by:
 - Degree of attacker's control on forgeable requests
- In total, identified 25 distinct templates
 - The majority of webapps use only one (i.e., 68 apps) or two (i.e., 17 apps) templates across all their webpages
- Request Fields:
 - In total, 55, 34, and 12 webapps allow modifying one, more than one, and all fields, respectively.

	Outgoing HTTP Request					Total	
Dom.	Path	Query	Body	Part	Control	Reqs	Apps
		\checkmark		One	-, A, -	16	11
			\checkmark	One	-, A, -	5	5
			\checkmark	One	W, -, -	(*)166	25
			\checkmark	One	-, -, P	1	1
	\checkmark			One	W, -, -	28	1
	~			One	-, A, -	7	7
	\checkmark			One	-, -, P	6	6
		\checkmark		One	-, -, P	11	11
	\checkmark		\checkmark	Mult	-, A, -	4	1
	\checkmark		\checkmark	Mult	W, -, -	(*)20	1
	\checkmark	\checkmark		Mult	W, A, P	6	1
		\checkmark	\checkmark	Mult	W, -, -	2	1
		\checkmark		Mult	-, A, -	7	7
			\checkmark	Mult	-, -, P	2	2
	\checkmark			Mult	-, A, -	3	3
		\checkmark		Mult	-, -, P	1	1
			\checkmark	Mult	-, A, -	5	5
	\checkmark			Mult	-, -, P	6	6
			\checkmark	Mult	W, -, -	28	8
	\checkmark	\checkmark		Any	W, -, -	1	1
\checkmark	\checkmark	\checkmark		Any	W, -, -	(*)185	8
\checkmark	\checkmark	\checkmark	\checkmark	Any	W, -, -	1	1
			\checkmark	Any	W, -, -	(*)1	1
			\checkmark	Any	W, -, -	2	2
	\checkmark	\checkmark	\checkmark	Any	W, -, -	1	1

Legend: A=Appending; P=Prepending; W=Writing.

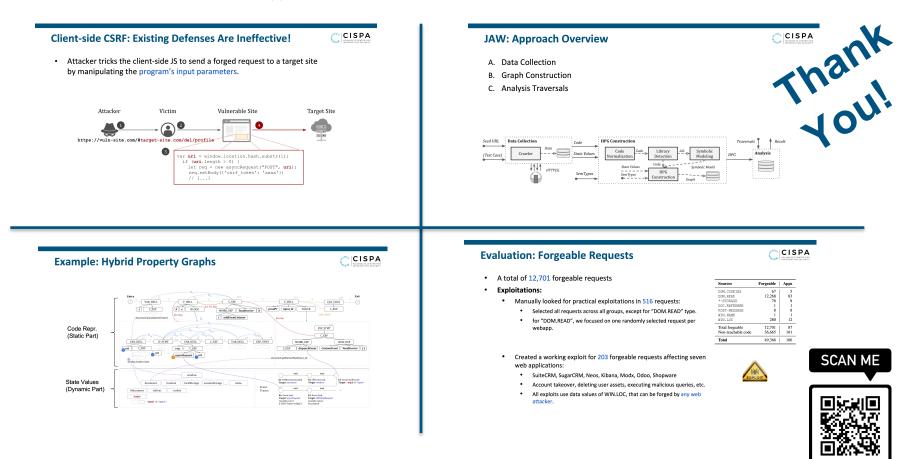
JAW Is Only the First Step. What's Next?

- (C1) Vulnerability-specific analysis tools and techniques
 - Support for additional vulnerability classes on the way.
- (C2) Isolated client/server-side security analysis
 - Web Property Graphs (WPGs)
 - Connecting the client-side to the server-side program in the property graph.
- **(C3)** Language-specific analysis tools
 - Support for other programming languages on the way.
 - Language-agnostic property graphs, requires UAST.
- (C4) Web execution environment
- (C5) Modeling shared code
 - Incremental Static Analysis

|--|

Conclusion

https://soheilkhodayari.github.io/JAW


CISPA

83

12

87 101

SCAN ME

