
The Great Request Robbery: An Empirical Study of
Client-side Request Hijacking Vulnerabilities on the Web

@Soheil__K soheil.khodayari@cispa.de

Soheil Khodayari*, Thomas Barber♱, and Giancarlo Pellegrino*

*CISPA - Helmholtz Center for Information Security
♱SAP Security Research

45th IEEE Symposium on Security and Privacy
May 20-23, 2024

Cross-Site Request Forgery (CSRF)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 2

• Trick user browser to send an authenticated request causing a persistent state change
• Root Cause: server cannot distinguish unintentional from intentional requests

Cross-Site Request Forgery (CSRF)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 3

• Trick user browser to send an authenticated request causing a persistent state change
• Root Cause: server cannot distinguish unintentional from intentional requests
• Robust defenses well-known

Origin Checks

SameSite Cookies

Random Tokens

Cross-Site Request Forgery (CSRF)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 4

• Trick user browser to send an authenticated request causing a persistent state change
• Root Cause: server cannot distinguish unintentional from intentional requests
• Robust defenses well-known

Origin Checks

SameSite Cookies

Random Tokens

Did we solve CSRF attacks with these defenses

Client-side CSRF

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 5

• Exploit input validation vulnerabilities in JavaScript programs to hijack async requests
• Similar vulnerability affected Instagram in 20181

1 Source: https://www.facebook.com/notes/996734990846339

Problem Statement

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 6

• Client-side CSRF only one instance of the larger issue of request hijacking
• Studied client-side CSRF before [USEC’21]
• Focused on XMLHttpRequest and Fetch APIs

• Other types of HTTP requests and APIs exists
• The sendBacon API accounting for > 35% of the API calls for async requests

• Web sockets, SSE connections, push notifications, etc

Problem Statement

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 7

• Client-side CSRF only one instance of the larger issue of request hijacking
• Studied client-side CSRF before [USEC’21]
• Focused on XMLHttpRequest and Fetch APIs

• Other types of HTTP requests and APIs exists
• The sendBacon API accounting for > 35% of the API calls for async requests

• Web sockets, SSE connections, push notifications, etc

RQ1: Browser APIs and Attacks

Problem Statement

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 8

• Client-side CSRF only one instance of the larger issue of request hijacking
• Studied client-side CSRF before [USEC’21]
• Focused on XMLHttpRequest and Fetch APIs

• Other types of HTTP requests and APIs exists
• The sendBacon API accounting for > 35% of the API calls for async requests

• Web sockets, SSE connections, push notifications, etc

• Attack surface
• No web measurement available, in-the-wild prevalence of request hijacking unknown

RQ1: Browser APIs and Attacks

Problem Statement

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 9

• Client-side CSRF only one instance of the larger issue of request hijacking
• Studied client-side CSRF before [USEC’21]
• Focused on XMLHttpRequest and Fetch APIs

• Other types of HTTP requests and APIs exists
• The sendBacon API accounting for > 35% of the API calls for async requests

• Web sockets, SSE connections, push notifications, etc

• Attack surface
• No web measurement available, in-the-wild prevalence of request hijacking unknown

RQ1: Browser APIs and Attacks

RQ2: Detection and Prevalence

Problem Statement

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 10

• Client-side CSRF only one instance of the larger issue of request hijacking
• Studied client-side CSRF before [USEC’21]
• Focused on XMLHttpRequest and Fetch APIs

• Other types of HTTP requests and APIs exists
• The sendBacon API accounting for > 35% of the API calls for async requests

• Web sockets, SSE connections, push notifications, etc

• Attack surface
• No web measurement available, in-the-wild prevalence of request hijacking unknown

• Defenses
• Classical request forgery defenses are ineffective
• What countermeasures are useful?

RQ1: Browser APIs and Attacks

RQ2: Detection and Prevalence

RQ3: Defenses and Effectiveness

RQ1: Request Browser APIs

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 11

• Configurable fields (e.g., URL, body, headers)
• Network schemes and methods
• Default constraints (e.g., Same-Origin Policy)

Compile a list of request-sending Web APIs and their capabilities (W3C, WHATWG)

Result: identified 10 request APIs across six broad request types

RQ1: Vulnerabilities and Attacks

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 12

Examined the security impact when an attacker controls one or more API inputs

Result: identified 10 distinct client-side request hijacking vulnerabilities

• Forge asynchronous request URL --- > client-side CSRF, information leaks
• Forge Location URL --- > client-side XSS, open redirections
• …

• Seven new vulnerabilities
• Two new variants (i.e., new API and/or exploitation)

See paper for more!

RQ1: Request API Prevalence

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 13

• In total, observed 7.9M API calls in Tranco top 10K domains (∼1M webpages)

• Most widespread
• Top-level navigation requests via location.href

• Present on more than 8K sites

• Most frequently used
• Asynchronous requests via the XMLHttpRequest
• Almost 3M calls across over 400K pages

RQ1: Request API Prevalence

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 14

• In total, observed 7.9M API calls in Tranco top 10K domains (∼1M webpages)

• Most widespread
• Top-level navigation requests via location.href

• Present on more than 8K sites

• Most frequently used
• Asynchronous requests via the XMLHttpRequest
• Almost 3M calls across over 400K pages.

The widespread usage of request-related APIs presents an attractive attack surface

Request hijacking threats have not been considered for 44% of API calls by prior work

RQ2: Vulnerability Detection (JAW v3: Sherriff)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 15

• Proposed a static-dynamic framework to study client-side request hijacking at scale

https://ja-w.me

RQ2: Vulnerability Detection (JAW v3: Sherriff)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 16

• Proposed a static-dynamic framework to study client-side request hijacking at scale

https://ja-w.me

RQ2: Taintflow-Augmented Hybrid Property Graphs

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 17

“https://attack.com”

“12”

Hybrid Property Graphs

• Static: AST, CFG, PDG, IPCG, ERDDG, …

• Dynamic: Concrete Program Values

Data Flow Analysis
• Track the propagation of attacker-controlled values

• Problem: missing edges due to static analysis

Code: 1 https://github.com/SAP/project-foxhound

Taintflow-Augmented HPGs

• Use in-browser dynamic taint tracking to reconstruct missing edges in HPGs

• Patched Foxhound1 to support various sinks (e.g., push API, WebSocket, EventSource, etc)

a

b

f
c

d

Example HPG

URL
window.location.hash

REQ

XMLHttpRequest()

RQ2: Vulnerability Prevalence

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 18

• Empirical study to quantify the prevalence of client-side request-hijacking in the wild

• Tranco top 10K websites, 339.2K unique webpages, 11.5M scripts, 32.4B LoC

Testbed

Results

• Detected 202K verified data flows across 17.8K affected pages and 961 sites

Dynamic information crucial for detecting ∼67% of the data flows

The new vulnerability types and variants constitute over 36% of the cases

RQ2: Exploitations

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 19

Demonstrate exploitability by focusing on a random subset of data flows
• Two pages from each of the 961 vulnerable sites

Forgeability verification and use in attacks
• Cross-Site Scripting: validation of javascript: URIs in top-level requests
• Request Forgery: inspect server endpoints triggering state changes
• Information Leak: request body exposes sensitive data (PIIs, auth keys, and CSRF tokens)
• Open Redirect: susceptibility of top-level requests to arbitrary redirections
• …

Created PoC exploits for 49 sites
• Microsoft Azure, Starz, Google DoubleClick, VK, DW, and TP-Link
• Arbitrary code execution, account takeover, data exfiltration, open redirections, etc

RQ2: Microsoft Azure Case Study

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 20

• Detected a critical request hijacking vulnerability in Microsoft Azure
• Confirmed and patched (MSRC-79059 VULN-097970)
• Impact: change user settings (CSRF), escalated to client-side XSS

2

1

• Request hijacking vulnerability in TP-Link escalated to client-side XSS
• Confirmed and patched (TKID240238113)
• The program performed no input validation

RQ2: TP-Link Case Study

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 21

TP-Link: page preview functionality
1

2

Read query param url

Write url to location.href

Defenses and their Effectiveness (1 / 3)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 22

Policy-based connect-src directive:

• (+) constrains request endpoints to trusted domains (i.e., no data exfiltration)
• (-) does not prevent request hijacks for CSRF attacks (i.e., same-site endpoints)

Content Security Policy

~41% of vulnerabilities cannot be mitigated by CSP

Even with a correct configuration:

Defenses and their Effectiveness (2 / 3)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 23

Policy-based connect-src directive:

• (+) constrains request endpoints to trusted domains (i.e., no data exfiltration)
• (-) does not prevent request hijacks for CSRF attacks (i.e., same-site endpoints)

Content Security Policy
Cross-Origin Opener Policy

~41% of vulnerabilities cannot be mitigated by CSP

Even with a correct configuration:

COOP: window.open() API

• (+) restricts the browsing context to same-origin documents

• (-) only effective when window.open() is used for providing malicious input

~93% of detected vulnerabilities cannot be mitigated by COOP

Defenses and their Effectiveness (2 / 3)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 24

Policy-based connect-src directive:

• (+) constrains request endpoints to trusted domains (i.e., no data exfiltration)
• (-) does not prevent request hijacks for CSRF attacks (i.e., same-site endpoints)

Content Security Policy
Cross-Origin Opener Policy
Cross-Origin Embedder Policy
Fetch MetaData

~41% of vulnerabilities cannot be mitigated by CSP

Even with a correct configuration:

COOP: window.open() API

• (+) restricts the browsing context to same-origin documents

• (-) only effective when window.open() is used for providing malicious input

~93% of detected vulnerabilities cannot be mitigated by COOP

See paper for more

Defenses and their Effectiveness (3 / 3)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 25

Policy-based Analyzed vulnerable flows to detect insecure input validation patterns
• Eight distinct behaviours across three types of issuesContent Security Policy

Cross-Origin Opener Policy
Cross-Origin Embedder Policy
Fetch MetaData

Custom

Input validation

• Compare two attacker-controlled values with one another (~3%) :

• Trivial checks, e.g., length, type, not null, etc (~13%)
• Substring searches and check of URL fields (~24%)

s.indexOf(“benign.com”) -> benign.com.evil.com

Flawed:

QueryParam === window.name

Insufficient:

Missing checks: ~47% of vulnerable data flows

Conclusion

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 26

• Client-side CSRF is only the tip of the iceberg

• Request hijacking data flows are ubiquitous (i.e., 9.6% of sites)

• Request hijacking can have diverse consequences

• Existing defenses necessary but insufficient

Thank You!

@Soheil__K https://github.com/SAP/project-foxhoundhttps://ja-w.me

