
Security Testing at Scale: Studying Emerging Client-side
Vulnerabilities in the Modern Web

@Soheil__K soheil.khodayari@cispa.de

Soheil Khodayari

CISPA - Helmholtz Center for Information Security

EPFL SuRI, July 11-12, 2024

Today: Security Researcher @CISPA, Germany (2019 – Present)
• Part of the AppSec Team
• Web Security, Browsers, Program Analysis at Scale

Past: Researcher & Developer (2013 – 2019)
• IMDEA Software, Madrid
• Fraunhofer IESE/AISEC, KL

• Brooktec SE, Madrid

PC Member: IEEE S&P, CCS, WWW, SecWeb, Euro S&P, …

Awards & Honors:
Distinguished Paper (SP’23 & ’24), Applied Research Award (CSAW’23), MSRC (Blackhat’23), …

About Soheil

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 2

AppSec Group

The Rise of Web Applications: Where User Input Runs Amok!

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 3

• Web apps accept and process plethora of user input

The Rise of Web Applications: Where User Input Runs Amok!

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 4

• Web apps accept and process plethora of user input
• In many different forms (text, markup, …)

The Rise of Web Applications: Where User Input Runs Amok!

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 5

User Input Can Go Rogue…

Are we validating all these inputs properly

Text Input

Markup Input

6

Modern Web Applications: Input Requests

benign.com

HTTP

</form>

HTTP

Payment GatewaysExternal services Social Media

. . .

Cross-Site (XS) Requests

CASE 1: First-party

Input from the Same Site

CASE 2: Third-party

Input from Other Sites

Assumption: Authorized Services

7

Modern Web Applications: Input Requests

benign.com

HTTP

</form>

HTTP

Payment GatewaysExternal services Social Media

. . .

Cross-Site (XS) Requests

CASE 1: First-party

Input from the Same Site

CASE 2: Third-party

Input from Other Sites

Assumption: Authorized Services

8

Oh, Wait … Who Made that Request?

Problem: How can we know who initiated a request?

First-party vs. Third-party

9

Oh, Wait … Who Made that Request?

• Solution: trust requests based on authentication & authorization

• Authenticate users’ browsers with account credentials before sending sensitive requests

“Now we know exactly which first party or third-party site initiated the request!”

“We can just reject the untrusted ones…”

10

Oh, Wait … Who Made that Request?

• Solution: trust requests based on authentication & authorization

• Authenticate users’ browsers with account credentials before sending sensitive requests

“Now we know exactly which first party or third-party site initiated the request!”

“We can just reject the untrusted ones…”

What About Requests from Trusted Sites?

Cross-Site Request Forgery (CSRF)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 11

• Trick user browser to send an authenticated request causing a persistent state change
• Root Cause: server cannot distinguish unintentional from intentional requests

Cross-Site Request Forgery (CSRF)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 12

• Trick user browser to send an authenticated request causing a persistent state change
• Root Cause: server cannot distinguish unintentional from intentional requests
• Robust defenses well-known

Origin Checks

SameSite Cookies

Random Tokens

Cross-Site Request Forgery (CSRF)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 13

• Trick user browser to send an authenticated request causing a persistent state change
• Root Cause: server cannot distinguish unintentional from intentional requests
• Robust defenses well-known

Origin Checks

SameSite Cookies

Random Tokens

Did we solve CSRF attacks with these defenses

Modern Web Applications: Input Requests

benign.com

HTTP

</form>

HTTP

Payment GatewaysExternal services Social Media

. . .

Cross-Site (XS) Requests

CASE 1: First-party

Input from the Same Site

CASE 2: Third-party

Input from Other Sites

Assumption: Authorized Services

Risk: Confused deputy for XS requests
Secured

Soheil Khodayari – OWASP Global AppSec Lisbon| 14

Modern Web Applications: Input Requests

benign.com

HTTP

</form>

HTTP

Payment GatewaysExternal services Social Media

. . .

Cross-Site (XS) Requests

CASE 1: First-party

Input from the Same Site

CASE 2: Third-party

Input from Other Sites

Assumption: Authorized Services

Risk: Confused deputy for XS requests
Secured

Confused deputy for SS requests?

Soheil Khodayari – OWASP Global AppSec Lisbon| 15

Client-side CSRF

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 16

• Exploit input validation vulnerabilities in JavaScript programs to hijack async requests

3

Client-side CSRF

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 17

• Exploit input validation vulnerabilities in JavaScript programs to hijack async requests
• Similar vulnerability affected Instagram in 20181

1 Source: https://www.facebook.com/notes/996734990846339

3
Facebook Bug Bounty

Post new status for the user

Browser Requests: So Many Options, So Many Hijacks!

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 18

• Client-side CSRF only one instance of the larger issue of request hijacking
• Mainly XMLHttpRequest and Fetch APIs

• Studied client-side CSRF before [USEC’21]

• Other types of HTTP requests and APIs exists
• The sendBacon API accounting for > 35% of the API calls for async reqs

• Web sockets, SSE connections, push notifications, etc

• Attack surface
• In total, about 7.9M request API calls in Tranco top 10K domains (∼1M webpages)

Browser Requests: So Many Options, So Many Hijacks!

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 19

• Client-side CSRF only one instance of the larger issue of request hijacking
• Mainly XMLHttpRequest and Fetch APIs

• Studied client-side CSRF before [USEC’21]

• Other types of HTTP requests and APIs exists
• The sendBacon API accounting for > 35% of the API calls for async reqs

• Web sockets, SSE connections, push notifications, etc

• Attack surface
• In total, about 7.9M request API calls in Tranco top 10K domains (∼1M webpages)

The widespread usage of request-related APIs presents an attractive attack surface

Request hijacking threats have not been considered for 44% of API calls by prior work

Vulnerability Detection at Scale

https://ja-w.me

A Graph-based Security Analysis Framework for Web applications

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 20

JAW

https://ja-w.me/

• A static-dynamic security analysis framework for web applications
- Core Components

• Data collection

• Static and dynamic analyzers
• Query-able model for web applications

- Analysis Engine
• Pool of workers to store and manage analyses and tasks at scale

• An analysis is a combination of tasks, e.g.:
- Detection of vulnerability x
- Discovery and collection of code pattern y

• A task is a reusable operation, e.g.:
- Crawl URL x
- Run forced execution on webpage p

JAW Framework: Architectural Overview

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 21

JAW: Request Hijacking Detection

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 22

• Sheriff: JAW instantiation to study client-side request hijacking at scale

JAW: Request Hijacking Detection

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 23

• Sheriff: JAW instantiation to study client-side request hijacking at scale

JAW: Request Hijacking Detection

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 24

• Sheriff: JAW instantiation to study client-side request hijacking at scale

JAW: Request Hijacking Detection

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 25

• Sheriff: JAW instantiation to study client-side request hijacking at scale

JAW: Request Hijacking Detection

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 26

• Sheriff: JAW instantiation to study client-side request hijacking at scale

JAW: Taintflow-Augmented Hybrid Property Graphs

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 27

“https://attack.com”

“12”

Hybrid Property Graphs

• Static: AST, CFG, PDG, IPCG, ERDDG, …

• Dynamic: Concrete Program Values

Data Flow Analysis
• Track the propagation of attacker-controlled values

• Problem: missing edges due to static analysis

Code: 1 https://github.com/SAP/project-foxhound

Taintflow-Augmented HPGs

• Use in-browser dynamic taint tracking to reconstruct missing edges in HPGs

• Patched Foxhound1 to support various sinks (e.g., push API, WebSocket, EventSource, etc)

a

b

f
c

d

Example HPG

URL
window.location.hash

REQ

XMLHttpRequest()

Request Hijacking: Prevalence

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 28

• Empirical study to quantify the prevalence of client-side request-hijacking in the wild

• Tranco top 10K websites, 339.2K unique webpages, 11.5M scripts, 32.4B LoC

Testbed

Results

• Detected 202K verified data flows across 17.8K affected pages and 961 sites

Dynamic information crucial for detecting ∼67% of the data flows

The new vulnerability types and variants constitute over 36% of the cases

Request Hijacking: Exploitations

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 29

Demonstrate exploitability by focusing on a random subset of data flows
• Two pages from each of the 961 vulnerable sites

• Created PoC exploits for 49 sites

• Microsoft Azure, Starz, Google DoubleClick, VK, DW, and TP-Link

• Arbitrary code execution, account takeover, data exfiltration, open redirections, etc

Microsoft Azure Case Study

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 30

• Detected a critical request hijacking vulnerability in Microsoft Azure
• Confirmed and patched (MSRC-79059 VULN-097970)
• Impact: change user settings (CSRF), escalated to client-side XSS

2

1

• Request hijacking vulnerability in TP-Link escalated to client-side XSS
• Confirmed and patched (TKID240238113)
• The program performed no input validation

TP-Link Case Study

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 31

TP-Link: page preview functionality
1

2

Read query param url

Write url to location.href

Request Hijacking: Defenses and their Effectiveness (1 / 3)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 32

Policy-based connect-src directive:

• (+) constrains request endpoints to trusted domains (i.e., no data exfiltration)
• (-) does not prevent request hijacks for CSRF attacks (i.e., same-site endpoints)

Content Security Policy

~41% of vulnerabilities cannot be mitigated by CSP

Even with a correct configuration:

Request Hijacking: Defenses and their Effectiveness (1 / 3)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 33

Policy-based connect-src directive:

• (+) constrains request endpoints to trusted domains (i.e., no data exfiltration)
• (-) does not prevent request hijacks for CSRF attacks (i.e., same-site endpoints)

Content Security Policy
Cross-Origin Opener Policy

~41% of vulnerabilities cannot be mitigated by CSP

Even with a correct configuration:

COOP: window.open() API

• (+) restricts the browsing context to same-origin documents

• (-) only effective when window.open() is used for providing malicious input

~93% of detected vulnerabilities cannot be mitigated by COOP

Request Hijacking: Defenses and their Effectiveness (1 / 3)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 34

Policy-based connect-src directive:

• (+) constrains request endpoints to trusted domains (i.e., no data exfiltration)
• (-) does not prevent request hijacks for CSRF attacks (i.e., same-site endpoints)

Content Security Policy
Cross-Origin Opener Policy
Cross-Origin Embedder Policy
Fetch MetaData

~41% of vulnerabilities cannot be mitigated by CSP

Even with a correct configuration:

COOP: window.open() API

• (+) restricts the browsing context to same-origin documents

• (-) only effective when window.open() is used for providing malicious input

~93% of detected vulnerabilities cannot be mitigated by COOP

See paper for more

The Rise of Web Applications: Where User Input Runs Amok!

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 35

User Input Can Go Rogue…

Are we validating all these inputs properly

Text Input

Markup Input

What if the validation fails?

XSS: The “One-Ring-to-Rule-Them-All” Attack

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 36

• Arbitrary client-side code execution (XSS)

Account take over, data exfiltration, financial losses

XSS: The “One-Ring-to-Rule-Them-All” Attack

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 37

• Arbitrary client-side code execution (XSS)

Achieved by code injection

Mitigated by controlling or disallowing code execution

Account take over, data exfiltration, financial losses

Well-known

XSS: The “One-Ring-to-Rule-Them-All” Attack

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 38

• Arbitrary client-side code execution (XSS)

What if code-less input can cause arbitrary code execution?

Achieved by code injection

Mitigated by controlling or disallowing code execution

Account take over, data exfiltration, financial losses

Well-known

XSS Evolving Complexity

XSS: The “One-Ring-to-Rule-Them-All” Attack

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 39

• Arbitrary client-side code execution (XSS)

What if code-less input can cause arbitrary code execution?

Achieved by code injection

Mitigated by controlling or disallowing code execution

Account take over, data exfiltration, financial losses

Well-known

Example:

JavaScript Programs Execution Environment

Unforeseen
Interactions

XSS Evolving Complexity

DOM Clobbering Vulnerability

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 40

DOM Tree

https://example.com

DOM Clobbering Vulnerability

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 41

DOM Tree Vuln. Script?

https://example.com

<script>

document.globalConfig = {'src': 'script.js', [...]};
// [...]
var s = document.createElement(‘script’);
s.src = document.globalConfig.src;
document.body.appendChild(s);

DOM Clobbering Vulnerability

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 42

DOM Tree Vuln. Script?

https://example.com

<script>

Input code-less markup

document.globalConfig = {'src': 'script.js', [...]};
// [...]
var s = document.createElement(‘script’);
s.src = document.globalConfig.src;
document.body.appendChild(s);

1 Inject HTML markup

DOM Clobbering Vulnerability

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 43

DOM Tree Vuln. Script?

https://example.com

2

<script>

Input code-less markup

Markup id/name collides with sensitive variables or APIs, and overwrites them

document.globalConfig = {'src': 'script.js', [...]};
// [...]
var s = document.createElement(‘script’);
s.src = document.globalConfig.src;
document.body.appendChild(s); Arbitrary Code

Execution

1 Inject HTML markup

• Locating DOM elements:

DOM Clobbering: Why It Happens?

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 44

The clean way: DOM query selectors

The dirty way: Property access on window or document

document.querySelector("[id=Y]")

document.X.Y, or window.Y

Window

Document

<html>

<form name=X>

<input id=Y>

<input id=Z>

n1

n2

n3

n4

n5

n6

Example: select node in the tree. n5

Named Access on Window/Document

DOM Clobbering: Why It Matters?

Source: https://chromestatus.com/metrics/feature/timeline/popularity/1824
Soheil Khodayari - CISPA Helmholtz Center for Information Security | 45

Cannot immediately turn off…

~ 11% of pages depend on clobbered variables

Clobbered Variable Access Usage

• Example: DOM Clobbering in GMail’s AMP4Email sanitizer (2019)

DOM Clobbering: Why It Matters?

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 46

Gmail’s Dynamic Mail Feature1

Consequence

Arbitrary code execution

1Source: https://workspaceupdates.googleblog.com/2019/06/dynamic-email-in-gmail-becoming-GA.html

Clobbering Markups: Automatic Discovery

Markup Generation and Testing

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 47

• 24M test cases

• 19 browsers (mobile and desktop)

• Covered all tags, attributes, relations and targets

• Targets: variable X, object property X.Y, and built-in APIs

Uncovered 31.4K distinct clobbering markups across five different techniques

Results

Only 481 previously known

<object name=X><object name=X id=Y>

NewExample: HTMLCollection: object tags with the same name

Clobbering Markups: Automatic Discovery

Markup Generation and Testing

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 48

• 24M test cases

• 19 browsers (mobile and desktop)

• Covered all tags, attributes, relations and targets

• Targets: variable X, object property X.Y, and built-in APIs

Uncovered 31,432 distinct clobbering markups across five different techniques

Results

Only 481 previously known

<object name=X><object name=X id=Y>

NewExample: HTMLCollection: object tags with the same name

See our paper for more!

Markup Generator Service – Online Demo

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 49

Browser Testing Service – Online Demo

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 51

domclob.xyz

DOM Clobbering Vulnerability: Prevalence

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 52

• Empirical study to quantify the prevalence of DOM clobbering in the wild

Tranco top 5K websites, 205.6K webpages, 18.3M scripts, 24.6B LoC

Testbed

Results

• Detected 9,467 clobberable data flows across 491 affected sites

• Exploits for 44 websites (all confirmed and patched):
• E.g., GitHub, Trello, Vimeo, Fandom, WikiBooks and VK
• Client-side XSS, open redirections and request forgery attacks

DOM Clobbering: Defenses and their Effectiveness (1 / 5)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 54

Mitigations script-src directive:

• (+) constrains script sources to trusted domains, preventing src clobbering
• (-) does not prevent clobbering params of dynamic code eval functions

Content Security Policy

~85% of vulnerabilities cannot be mitigated by CSP

DOM Clobbering: Defenses and their Effectiveness (1 / 5)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 55

Mitigations

Content Security Policy
DOM Object Freezing

~85% of vulnerabilities cannot be mitigated by CSP

Object.freeze() API:

• (+) prevent from being overwritten by named DOM elements
• (-) ineffective when the DOM clobbering source is a built-in API

~21% of vulnerabilities cannot be mitigated by object freezing

script-src directive:

• (+) constrains script sources to trusted domains, preventing src clobbering
• (-) does not prevent clobbering params of dynamic code eval functions

DOM Clobbering: Defenses and their Effectiveness (1 / 5)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 56

Mitigations

Sanitizer
Clobbering Markups

(31.4K of RQ1)

Evaluated the robustness of 29 client-side and server-side HTML sanitizers
• JS, Python, PHP, C#, and Java

Default Strict

Config

<a />

Output

?

Results

Content Security Policy
DOM Object Freezing
HTML Sanitization

In total, 16 sanitizers vulnerable to at least one clobbering markup by default
• Including popular ones like DOMPurify, Mozilla Bleach, and Google Caja
• 13 of them also vulnerable in most strict config

The other 13 sanitizers always remove named properties
• Including cases that do not lead to DOM Clobbering (e.g.,)

DOM Clobbering: Defenses and their Effectiveness (1 / 5)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 57

Content Security Policy
DOM Object Freezing
HTML Sanitization
Namespace Isolation

Mitigations

Sanitizer

Alternative: prefix/isolate named properties instead of removing them
• (+) mitigates almost all DOM Clobbering cases
• (-) may require some implementation changes by developers

Contribution: implemented namespace isolation in DOMPurify
• Use the new SANITIZE_NAMED_PROPS config

?

Learn more on GitHub...

DOM Clobbering: Defenses and their Effectiveness (1 / 5)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 58

HTML Sanitization
Namespace Isolation
Content Security Policy
DOM Object Freezing

Mitigations

Kill Switch

Disabling DOM Clobbering

Solution: disable named properties at browser-level?
• (+) fixes all DOM Clobbering cases
• (-) can cause breakage

Proposal to W3C:
Opt-in CSP/feature
policy flag to allow
developers to disable
name properties

Measurement

Cost: 13.3% of webpages use named properties and will break (~51% of sites)
Benefit: fixes the 491 vulnerable sites (i.e., 9.8% of top 5K sites)

breakage-benefit balance: ratio of ~5:1

Infeasible

Quasi-Real Time Web Measurements
• Let’s allow people to query the data that we acquired and processed

• Knowledge base for security-relevant properties of in the wild webapps
elementalis.io

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 59

Raw data: JS code, DOM snapshots,

libraries, URLs, HTTP headers, …

Processed data: data flows, API

calls, PDGs, CFGs, IPCGs, ERDDGs,

state values, env properties, …

Connected data: flows to values to

code to HTML

Conclusion

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 60

• Client-side code complexity growth introduced new vulnerability variants

• Clobberable / forgeable data flows are ubiquitous (∼9% of sites)

• Existing defenses helpful but may not completely cut it

Thank You!

ja-w.me github.com/SAP/project-foxhound

IEEE SP’23 and ‘24
Distinguished Paper Awards

domclob.xyzelementalis.io

@Soheil__K soheil.khodayari@cispa.de

