
JAW: Studying Client-side CSRF with Hybrid Property
Graphs and Declarative Traversals

Soheil Khodayari and Giancarlo Pellegrino
CISPA Helmholtz Center for Information Security

30th USENIX Security Symposium
August 11-13, 2021

Cross-Site Request Forgery (CSRF)

CISPA Helmholtz Center for Information Security | 2

<script src=
“https://bank.com/
transfer?amt=1000&
to=attacker”>

1

bank.comattacker.comVictim

Robust defenses already known:
• Referrer/Origin Checks

• Hard-to-guess tokens

• SameSite Cookies
• SameSite=Lax by default

getOrigin(req2) != bank.com

getToken(req2) != CSRFToken

isAuthenticated(req2) != True

2

Cross-Site Request Forgery (CSRF)

CISPA Helmholtz Center for Information Security | 3

<script src=
“https://bank.com/
transfer?amt=1000&
to=attacker”>

1

bank.comattacker.comVictim

Robust defenses already known:
• Referrer/Origin Checks

• Hard-to-guess tokens

• SameSite Cookies
• SameSite=Lax by default

getOrigin(req2) != bank.com

getToken(req2) != CSRFToken

isAuthenticated(req2) != True

2

Are CSRF attacks solved?

Client-side CSRF

CISPA Helmholtz Center for Information Security | 4

Victim

1 2

Attacker

3

https://bank.com/#/transfer?amt=1000&to=attacker

bank.combank.com

XSRF-
TOKEN+

var uri = window.location.hash.substr(1);

if (uri.length > 0) {

uri = "bank.com/api" + uri;

let req = new asyncRequest("POST", uri);
req.setBody({"csrf_token" : "XSRF-TOKEN"});

// [...]

}

Target ServerVulnerable Webpage

• Limited knowledge about client-side CSRF.
• Facebook in 20181

• Objective: studying client-side CSRF vulnerabilities

• (RQ1) Prevalence of client-side CSRF in webapps?
• (RQ2) Attacker models and exploitations?
• (RQ3) Degree of attacker control?

• E.g., path, query, domain, body

Problem Statement

1 Source: facebook.com/notes/996734990846339/ CISPA Helmholtz Center for Information Security | 5

Challenge: analysis of JavaScript
programs to study client-side CSRF
is not an easy task.

(C1) Canonical representation for JavaScript

(C2) Event-based transfer of control

(C3) Dynamic web execution environment

(C4) Modeling shared third-party code

POST /path/file.php?q=v\r\n

Host: example.com\r\n

\r\n

{body}

• A scalable, graph-based framework for detection and
exploratory analysis of client-side CSRF vulnerabilities

• Components
• Data Collection
• Graph Construction
• Analysis Traversals

Approach Overview: JAW

CISPA Helmholtz Center for Information Security | 6

https://soheilkhodayari.github.io/JAW

• A scalable, graph-based framework for detection and
exploratory analysis of client-side CSRF vulnerabilities

• Components
• Data Collection
• Graph Construction
• Analysis Traversals

Approach Overview: JAW

CISPA Helmholtz Center for Information Security | 7

https://soheilkhodayari.github.io/JAW

• A scalable, graph-based framework for detection and
exploratory analysis of client-side CSRF vulnerabilities

• Components
• Data Collection
• Graph Construction
• Analysis Traversals

Approach Overview: JAW

CISPA Helmholtz Center for Information Security | 8

https://soheilkhodayari.github.io/JAW

• A scalable, graph-based framework for detection and
exploratory analysis of client-side CSRF vulnerabilities

• Components
• Data Collection
• Graph Construction
• Analysis Traversals

Approach Overview: JAW

CISPA Helmholtz Center for Information Security | 9

https://soheilkhodayari.github.io/JAW

• Code Representation (Static)
• Abstract Syntax Tree (AST)
• Control Flow Graph (CFG)
• Program Dependence Graph (PDG)
• Inter-Procedural Call Graph (IPCG)
• Event Registration, Dispatch and Dependency Graph (ERDDG)
• Semantic Types and Symbolic Models

• State Values (Dynamic)
• Event Traces
• Environment Properties

Hybrid Property Graphs (HPGs): Building Blocks

CPG for C/C++
[Yamaguchi et al,

S&P’14]

CPG for PHP
[Bakes et al.,
EuroS&P’17]

CISPA Helmholtz Center for Information Security | 10

HPG for
JavaScript

Symbolic Models and Semantic Types Propagation

• External libraries: over 60% of the total LoC of each webpage.
• Problem:

• Existing approaches: Inefficient, include library code in the analysis

• Idea: Shared models for JS libraries

CISPA Helmholtz Center for Information Security | 11

<script src=“lib.js”/>

Symbolic Model for lib.jsHPG for lib.js

URL

XMLHttpRequest()window.location.href

URL

libObject.href

libHttpRequest()
REQ

URL REQREQ
O~I

O<-I

Evaluation: Forgeable Requests

• Evaluated JAW with all webapps from the Bitnami catalog
• 106 webapps
• 228M LoC

• Detected 12,701 forgeable requests affecting 87 webapps

Exploitations

• Manually looked for practical exploitations in 516 requests

• Created exploits for 203 requests of seven webapps

• SuiteCRM, SugarCRM, Neos, Kibana, Modx, Odoo, and Shopware
• Account takeover, deleting user assets, …

CISPA Helmholtz Center for Information Security | 12

Input Source Forgeable Apps

DOM.COOKIES

DOM.READ

*-Storage

DOC.REFERRER

POST-MESSAGE

WIN.NAME

WIN.LOC

67

12,268

76

1

8

1

280

5

83

8

1

8

1

12

Total Forgeable

Total Requests

12,701

49,366

87

106

Evaluation: Analysis of Forgeable Requests

• Exploitation landscape can be influenced by:
• Type of controllable fields
• Operation to forge a field

• Identified 25 distinct templates. For example:

• 185/ 516 requests: manipulate any part of domain + path + query

• 20/ 516 requests: manipulate multiple parts of path + body

• 166/ 516 requests: manipulate a single part of body

• See the paper for more

CISPA Helmholtz Center for Information Security | 13

POST /path/file.php?q=v\r\n

Host: example.com\r\n

\r\n

{body}

Conclusion https://soheilkhodayari.github.io/JAW

@Soheil__K Thank You!

